Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapeutic siRNA silencing in inflammatory monocytes in mice

Abstract

Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes—but not the noninflammatory subset—depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nanoparticle-encapsulated siRNA is distributed to leukocytes.
Figure 2: Intravenous injection of nanoparticle-encapsulated siRNA results in knockdown in monocytes.
Figure 3: Treatment with siCCR2 reduces ischemia reperfusion injury.
Figure 4: Treatment with siCCR2 reduces inflammation in atherosclerotic lesions in apoE−/− mice.
Figure 5: siCCR2 treatment prolongs survival of pancreatic islet allografts.
Figure 6: Treatment with siCCR2 reduces tumor size and the number of tumor-associated macrophages.

References

  1. Charo, I.F. & Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Serbina, N.V. & Pamer, E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Dewald, O. et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kaikita, K. et al. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. 165, 439–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdi, R. et al. Differential role of CCR2 in islet and heart allograft rejection: tissue specificity of chemokine/chemokine receptor function in vivo. J. Immunol. 172, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lu, X. & Kang, Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J. Biol. Chem. 284, 29087–29096 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458, 1180–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peer, D., Park, E.J., Morishita, Y., Carman, C.V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319, 627–630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whitehead, K.A., Langer, R. & Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Judge, A.D. et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J. Clin. Invest. 119, 661–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Love, K.T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl. Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nahrendorf, M., Pittet, M.J. & Swirski, F.K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 2437–2445 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Swirski, F.K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Robertson, R.P. Islet transplantation as a treatment for diabetes - a work in progress. N. Engl. J. Med. 350, 694–705 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Swirski, F.K. et al. Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. J. Clin. Invest. 120, 2627–2634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Palma, M. & Lewis, C.E. Cancer: macrophages limit chemotherapy. Nature 472, 303–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Qian, B.Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    CAS  PubMed  Google Scholar 

  29. Hart, K.M., Bak, S.P., Alonso, A. & Berwin, B. Phenotypic and functional delineation of murine CX(3)CR1 monocyte-derived cells in ovarian cancer. Neoplasia 11, 564–573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pahler, J.C. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 10, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vaishnaw, A.K. et al. A status report on RNAi therapeutics. Silence 1, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roberts, R., DeMello, V. & Sobel, B.E. Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53, I204–I206 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Buxton, D.B. Nanotechnology research support at the national heart, lung, and blood institute. Circ. Res. 109, 250–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 105, 11915–11920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heyes, J., Palmer, L., Bremner, K. & MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release 107, 276–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Nahrendorf, M. et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl. Acad. Sci. USA 107, 7910–7915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leuschner, F. et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res. 107, 1364–1373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, D.J. et al. Resistance to anti-CD45RB-induced tolerance in NOD mice: mechanisms involved. Transpl. Int. 17, 261–269 (2004).

    Article  PubMed  Google Scholar 

  42. Souto, F.O. et al. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am. J. Respir. Crit. Care Med. 183, 234–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Furuichi, K. et al. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J. Am. Soc. Nephrol. 14, 2503–2515 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Waring, A. Chicoine and the Ragon Institute (MGH) for cell sorting, the CSB Mouse Imaging Program (P. Waterman, B. Sena) and B. Bettencourt for designing initial sets of siRNA. We acknowledge the small, medium and large scale RNA synthesis groups at Alnylam as well as analytical, duplex annealing and QC groups for synthesizing and characterizing RNAs. This work was funded in part by grants from the US National Institutes of Health R01-HL096576, R01-HL095629 (M.N.); R01-EB006432, T32-CA79443, U24-CA92782, P50-CA86355, HHSN268201000044C (R.W.); R01-CA132091, R01-CA115527, R37-EB000244 (R.L.); Deutsche Herzstiftung (F.L.); and the SNUBH Research Fund 02-2007-013 (W.W.L.).

Author information

Authors and Affiliations

Authors

Contributions

F.L. and P.D. performed experiments, collected and analyzed the data and contributed to writing the manuscript, R.G. did surgeries and performed experiments, T.I.N. designed experiments and siRNA screens, analyzed data and contributed to writing the manuscript; K.M.L. did islet transplantations and analyzed data, J.S.D., G.C., J.I.K., J.F.M., B.M., P.P., W.W.L., Y.I., V.C.-R., A.N., W.C., J.W. performed experiments, imaging, collected, analyzed and discussed data, S.M., H.E.-B., K.L. formulated siRNA nanoparticles, P.L., M.J.P. and F.K.S. conceived experiments and discussed strategy and results; V.K., R.L., R.W., D.G.A. and M.N. designed experiments, developed siRNA delivery technology and in vivo imaging strategies and systems, and reviewed, analyzed and discussed data. M.N. and R.W. wrote the manuscript which was edited and approved by all co-authors. M.N. developed and supervised the project.

Corresponding authors

Correspondence to Ralph Weissleder or Matthias Nahrendorf.

Ethics declarations

Competing interests

T.I.N., S.M., H.E.B., W.C., J.W. and V.K. are Alnylam Pharmaceuticals employees; K.L., R.L., and D.G.A. receive funding from Alnylam Pharmaceuticals. R.L. and D.G.A. are consultants with Alnylam.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 3232 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leuschner, F., Dutta, P., Gorbatov, R. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29, 1005–1010 (2011). https://doi.org/10.1038/nbt.1989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing