Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An unbiased genome-wide analysis of zinc-finger nuclease specificity

Abstract

Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trapping of IDLVs into ZFN-induced DNA DSBs.
Figure 2: Gene targeting using ZFNs and a homologous donor vector.
Figure 3: CLIS at genomic loci in ZFN-treated cells.
Figure 4: Validation of (nr)LAM-PCR identified off-target CLIS loci.
Figure 5: Comparative analysis of zinc-finger sequence specificity in vivo.

Similar content being viewed by others

References

  1. Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. & Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mani, M., Smith, J., Kandavelou, K., Berg, J.M. & Chandrasegaran, S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem. Biophys. Res. Commun. 334, 1191–1197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, P.Q. et al. Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol. Bioeng. 106, 97–105 (2010).

    CAS  PubMed  Google Scholar 

  10. Santiago, Y. et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 5809–5814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Geurts, A.M. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moehle, E.A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA 104, 3055–3060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maeder, M.L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. DeKelver, R.C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 20, 1133–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doyon, J.B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldberg, A.D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Vargas, J. Jr., Gusella, G.L., Najfeld, V., Klotman, M.E. & Cara, A. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum. Gene Ther. 15, 361–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Li, L. et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nightingale, S.J. et al. Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther. 13, 1121–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Gaur, M. & Leavitt, A.D. Mutations in the human immunodeficiency virus type 1 integrase D,D(35)E motif do not eliminate provirus formation. J. Virol. 72, 4678–4685 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller, D.G., Petek, L.M. & Russell, D.W. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767–773 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, Y. & Waldman, A.S. Promiscuous patching of broken chromosomes in mammalian cells with extrachromosomal DNA. Nucleic Acids Res. 29, 3975–3981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, Y. & Waldman, A.S. Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics 158, 1665–1674 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Petek, L.M., Russell, D.W. & Miller, D.G. Frequent endonuclease cleavage at off-target locations in vivo. Mol. Ther. 18, 983–986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deichmann, A. et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J. Clin. Invest. 117, 2225–2232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt, M. et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat. Methods 4, 1051–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gabriel, R. et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat. Med. 15, 1431–1436 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Paruzynski, A. et al. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat. Protoc. 5, 1379–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Schroeder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article  Google Scholar 

  34. Mitchell, R.S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matrai, J. et al. Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology 53, 1696–1707 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Honma, M. et al. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells. DNA Repair (Amst.) 6, 781–788 (2007).

    Article  CAS  Google Scholar 

  38. Cornu, T.I. & Cathomen, T. Targeted genome modifications using integrase-deficient lentiviral vectors. Mol. Ther. 15, 2107–2113 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Handel, E.M., Alwin, S. & Cathomen, T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol. Ther. 17, 104–111 (2009).

    Article  PubMed  Google Scholar 

  41. Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanamee, E.S., Santagata, S. & Aggarwal, A.K. FokI requires two specific DNA sites for cleavage. J. Mol. Biol. 309, 69–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U. Abel for fruitful discussions. Funding was provided by the Deutsche Forschungsgemeinschaft (SPP1230, grant of the Tumor Center Heidelberg/Mannheim), by the Bundesministerium für Bildung und Forschung (iGene), by the VIth + VIIth Framework Programs of the European Commission (EC, European Network for the Advancement of Clinical Gene Transfer and Therapy (CLINIGENE) and Persisting Transgenesis (PERSIST) and by the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Immunotherapy of Cancer to C.v.K. and M.S. Funding to L.N. was provided by Telethon (TIGET grant), EC (FP7-HEALTH-2009-222878, PERSIST; ERC Advanced Grant FP7, Targeting gene therapy - 249845).

Author information

Authors and Affiliations

Authors

Contributions

R.G., A.L., H.G., M.S., J.C.M., P.D.G., M.C.H., L.N. and C.v.K. conceived the project, designed experiments and interpreted data. R.G., A.L., P.G., C.K., A.N., J.W., G.F. and C.C.B. performed experiments. R.G., A.A. and J.C.M. conducted bioinformatics analysis. M.C.H. and P.D.G. provided ZFN. R.G., A.L., A.A., J.C.M., M.C.H., P.D.G., M.S., L.N. and C.v.K. prepared and wrote the manuscript.

Corresponding authors

Correspondence to Luigi Naldini or Christof von Kalle.

Ethics declarations

Competing interests

J.C.M., J.W., G.F., M.C.H. and P.D.G. are full-time employees of Sangamo BioSciences.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,2, Supplementary Discussion, Supplementary Methods and Supplementary Figures 1–16 (PDF 927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, R., Lombardo, A., Arens, A. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29, 816–823 (2011). https://doi.org/10.1038/nbt.1948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing