Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing

Abstract

Polyploidy complicates genomics-based breeding of many crops, including wheat, potato, cotton, oat and sugarcane. To address this challenge, we sequenced leaf transcriptomes across a mapping population of the polyploid crop oilseed rape (Brassica napus) and representative ancestors of the parents of the population. Analysis of sequence variation1 and transcript abundance enabled us to construct twin single nucleotide polymorphism linkage maps of B. napus, comprising 23,037 markers. We used these to align the B. napus genome with that of a related species, Arabidopsis thaliana, and to genome sequence assemblies of its progenitor species, Brassica rapa and Brassica oleracea. We also developed methods to detect genome rearrangements and track inheritance of genomic segments, including the outcome of an interspecific cross. By revealing the genetic consequences of breeding, cost-effective, high-resolution dissection of crop genomes by transcriptome sequencing will increase the efficiency of predictive breeding even in the absence of a complete genome sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of sequence polymorphism types in homozygous lines.
Figure 2: Transcript abundance and comparative analysis of linkage group A1.
Figure 3: Origins of alleles of loci mapped to linkage group A1.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Trick, M., Long, Y., Meng, J. & Bancroft, I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol. J. 7, 334–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Rounsley, S. et al. De novo next generation sequencing of plant genomes. Rice 2, 35–43 (2009).

    Article  Google Scholar 

  3. Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275–1281 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833–839 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. The Brassica rapa Genome Sequencing Consortium. The genome of the mesohexaploid crop species Brassica rapa. Nat. Genet. (in the press).

  8. Arabidopsis Genome Initiative. Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  9. International Rice Genome Sequencing Initiative. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  CAS  Google Scholar 

  10. U, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap. J. Bot. 7, 389–452 (1935).

    Google Scholar 

  11. Lagercrantz, U. & Lydiate, D. Comparative genome mapping in Brassica. Genetics 144, 1903–1910 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. O'Neill, C.M. & Bancroft, I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Rana, D. et al. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Schranz, M.E., Lysak, M.A., Mitchell-Olds, T. & The, A.B. C's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11, 535–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Arumuganathan, K. & Earle, E.D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).

    Article  CAS  Google Scholar 

  16. Trick, M. et al. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol. 9, 50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu, D. et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor. Appl. Genet. 114, 67–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Suwabe, K., Morgan, C. & Bancroft, I. Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51, 169–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Parkin, I.A. et al. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171, 765–781 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Town, C.D. et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, T.J. et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheung, F. et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21, 1912–1928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharpe, A.G. & Lydiate, D.J. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46, 461–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, J. et al. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182, 851–861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. You, F.M. et al. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12, 59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, H., Ruan, J. & Durbin, R. Mapping short DNA reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Ooijen, J.W. & Voorrips, R.E. JoinMap 3.0, Software for the Calculation of Genetic Linkage Maps (Plant Research International, Wageningen, the Netherlands, 2001).

Download references

Acknowledgements

We thank The Genome Analysis Centre for generating Illumina sequence data and the Warwick HRI Genetic Resources Unit for seeds of cultivar Regent. This work was supported by UK Biotechnology and Biological Sciences Research Council (BBSRC BB/E017363/1, ERAPG08.008), UK Department for Environment, Food and Rural Affairs (Defra IF0144) and by China National Basic Research and Development Program (2006CB101600 and 2011CB109300).

Author information

Authors and Affiliations

Authors

Contributions

I.B. and M.T. conceived and planned the project. F.F., L.C. and D.B. carried out the experiments. I.B., C.M., J.H., R.W. and M.T. performed data analysis. Y.L. and J.M. provided materials and scoring data for conventional markers on the population. X.W. and S.L. provided access to unpublished genome sequence scaffolds. I.B. and M.T. wrote the manuscript and all authors reviewed it.

Corresponding author

Correspondence to Ian Bancroft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1, 2 and Supplementary Figures 1–6 (PDF 1058 kb)

Supplementary Data Set 1

Marker details for the cognate linkage map (XLS 17059 kb)

Supplementary Data Set 2

Marker details for the non-cognate linkage map (XLS 1280 kb)

Supplementary Data Set 3

Base counts at IHP positions in Tapidor and Ningyou 7 (XLS 9928 kb)

Supplementary Data Set 4

Coordinates for splitting of Brassica rapa and Brassica oleracea genome assembly scaffolds (XLS 14 kb)

Supplementary Data Set 5

B. rapa and B. oleracea genome scaffolds anchored to the B. napus (XLS 781 kb)

Supplementary Data Set 6

Marker alleles scored in ancestors of Tapidor and Ningyou 7 (XLS 4352 kb)

Supplementary Data Set 7

Perl script combiner.pl (TXT 20 kb)

Supplementary Data Set 8

Perl script cure_cycle.pl (TXT 2 kb)

Supplementary Data Set 9

Perl script cure_refseqs.pl (TXT 3 kb)

Supplementary Data Set 10

Perl script ihp.pl (TXT 11 kb)

Supplementary Data Set 11

Perl script tag_counter.pl (TXT 2 kb)

Supplementary Data Set 12

Perl script AC_count.pl (TXT 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bancroft, I., Morgan, C., Fraser, F. et al. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29, 762–766 (2011). https://doi.org/10.1038/nbt.1926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing