Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global gene disruption in human cells to assign genes to phenotypes by deep sequencing

Abstract

Insertional mutagenesis in a haploid background can disrupt gene function1. We extend our earlier work by using a retroviral gene-trap vector to generate insertions in >98% of the genes expressed in a human cancer cell line that is haploid for all but one of its chromosomes. We apply phenotypic interrogation via tag sequencing (PhITSeq) to examine millions of mutant alleles through selection and parallel sequencing. Analysis of pools of cells, rather than individual clones1 enables rapid assessment of the spectrum of genes involved in the phenotypes under study. This facilitates comparative screens as illustrated here for the family of cytolethal distending toxins (CDTs). CDTs are virulence factors secreted by a variety of pathogenic Gram-negative bacteria responsible for tissue damage at distinct anatomical sites2. We identify 743 mutations distributed over 12 human genes important for intoxication by four different CDTs. Although related CDTs may share host factors, they also exploit unique host factors to yield a profile characteristic for each CDT.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic interrogation via tag sequencing (PhITSeq).
Figure 2: Host factors used by different CDTs.
Figure 3: Genes linked to different phenotypes.

Similar content being viewed by others

References

  1. Carette, J.E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  Google Scholar 

  2. Ge, Z., Schauer, D.B. & Fox, J.G. In vivo virulence properties of bacterial cytolethal-distending toxin. Cell. Microbiol. 10, 1599–1607 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Mazurkiewicz, P., Tang, C.M., Boone, C. & Holden, D.W. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nat. Rev. Genet. 7, 929–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Gawronski, J.D., Wong, S.M.S., Giannoukos, G., Ward, D.V. & Akerley, B.J. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc. Natl. Acad. Sci. USA 106, 16422–16427 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. van Opijnen, T., Bodi, K.L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brady, T. et al. Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev. 23, 633–642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bao, F. et al. Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors. Leuk. Res. 31, 1511–1520 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. van Delft, M.F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hauck, P., Chao, B.H., Litz, J. & Krystal, G.W. Alterations in the Noxa/Mcl-1 axis determine sensitivity of small cell lung cancer to the BH3 mimetic ABT-737. Mol. Cancer Ther. 8, 883–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Lara-Tejero, M. & Galan, J.E. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Nesic, D., Hsu, Y. & Stebbins, C.E. Assembly and function of a bacterial genotoxin. Nature 429, 429–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Higo, T. et al. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120, 85–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Steegmaier, M., Borges, E., Berger, J., Schwarz, H. & Vestweber, D. The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J. Cell Sci. 110, 687–694 (1997).

    CAS  PubMed  Google Scholar 

  15. Gommel, D. et al. p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. FEBS Lett. 447, 179–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Janz, R. & Sudhof, T.C. Cellugyrin, a novel ubiquitous form of synaptogyrin that is phosphorylated by pp60(c-src). J. Biol. Chem. 273, 2851–2857 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Qin, Y.J. et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat. Genet. 42, 229–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergeret, E. et al. TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis. J. Cell Sci. 121, 3325–3334 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Dröse, S. et al. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32, 3902–3906 (1993).

    Article  PubMed  Google Scholar 

  20. Momparler, R.L. Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin. Hematol. 42, S9–S16 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pruitt, K.D., Tatusova, T. & Maglott, D.R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–D619 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott, D.A. & Kaper, J.B. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect. Immun. 62, 244–251 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Sabatini and J. Roix for critical reading of this manuscript, S. Boulant, M. Nibert and R. Rooswinkel for providing reagents, and T. DiCesare for graphics support. I.W. was supported by a PhD fellowship from the Boehringer Ingelheim Fonds. T.R.B. was supported by US National Institutes of Health grant R21-HG004938-01. The construct for the full operon of E. coli CDT was generously provided by J. Kaper, University of Maryland School of Medicine, Baltimore.

Author information

Authors and Affiliations

Authors

Contributions

J.E.C., C.P.G., I.W., V.A.B., M.V., C.S., M.K.M., S.M.N. and T.R.B. designed and performed experiments. B.Y., G.B., J.E.C., V.A.B. and T.R.B. were involved in the bioinformatics. J.E.C., C.P.G., I.W., V.A.B., H.L.P. and T.R.B. wrote the manuscript.

Corresponding authors

Correspondence to Hidde L Ploegh or Thijn R Brummelkamp.

Ethics declarations

Competing interests

J.E.C. and T.R.B. are named inventors on a patent application on technology described in this manuscript. S.M.N. and T.R.B. are co-founders of an early-stage startup company involved in haploid genetic approaches.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–3 (PDF 1680 kb)

Supplementary Table 1

Supplementary Table 1 (XLSX 36329 kb)

Supplementary Table 2

Supplementary Table 2 (XLSX 11995 kb)

Supplementary Table 3

Supplementary Table 3 (XLSX 310 kb)

Supplementary Table 4

Supplementary Table 4 (XLSX 105 kb)

Supplementary Table 5

Supplementary Table 5 (XLSX 91 kb)

Supplementary Table 6

Supplementary Table 6 (XLSX 270 kb)

Supplementary Table 7

Supplementary Table 7 (XLSX 116 kb)

Supplementary Table 8

Supplementary Table 8 (XLSX 69 kb)

Supplementary Table 9

Supplementary Table 9 (XLSX 188 kb)

Supplementary Table 10

Supplementary Table 10 (XLSX 138 kb)

Supplementary Table 11

Supplementary Table 11 (XLSX 142 kb)

Supplementary Table 12

Supplementary Table 12 (XLSX 100 kb)

Supplementary Table 13

Supplementary Table 13 (XLSX 156 kb)

Supplementary Table 14

Supplementary Table 14 (XLSX 83 kb)

Supplementary Table 15

Supplementary Table 15 (XLSX 114 kb)

Supplementary Table 16

Supplementary Table 16 (XLSX 324 kb)

Supplementary Table 17

Supplementary Table 17 (XLSX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carette, J., Guimaraes, C., Wuethrich, I. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 29, 542–546 (2011). https://doi.org/10.1038/nbt.1857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1857

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer