Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conversion of proteins into biofuels by engineering nitrogen flux

Abstract

Biofuels are currently produced from carbohydrates and lipids in feedstock. Proteins, in contrast, have not been used to synthesize fuels because of the difficulties of deaminating protein hydrolysates. Here we apply metabolic engineering to generate Escherichia coli that can deaminate protein hydrolysates, enabling the cells to convert proteins to C4 and C5 alcohols at 56% of the theoretical yield. We accomplish this by introducing three exogenous transamination and deamination cycles, which provide an irreversible metabolic force that drives deamination reactions to completion. We show that Saccharomyces cerevisiae, E. coli, Bacillus subtilis and microalgae can be used as protein sources, producing up to 4,035 mg/l of alcohols from biomass containing 22 g/l of amino acids. These results show the feasibility of using proteins for biorefineries, for which high-protein microalgae could be used as a feedstock with a possibility of maximizing algal growth1 and total CO2 fixation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening of regulatory mutants for improved isobutanol production.
Figure 2: Nitrogen-centric metabolic engineering strategy in E. coli. Error bars indicate s.d. (n = 3).
Figure 3: Biofuel production and biorefining scheme from algal or bacterial protein sources.

Similar content being viewed by others

References

  1. Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. A Look Back at the US Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report (National Renewable Energy Laboratory, Golden, CO, USA; 1998). <http://www.nrel.gov/biomass/pdfs/24190.pdf>

    Book  Google Scholar 

  2. Wijffels, R.H. & Barbosa, M.J. An outlook on microalgal biofuels. Science 329, 796 (2010).

    Article  CAS  Google Scholar 

  3. Miller, S.A. Minimizing land use and nitrogen intensity of bioenergy. Environ. Sci. Technol., 44, 3932–3939 (2010).

    Article  CAS  Google Scholar 

  4. Melillo, J.M. et al. Indirect emissions from biofuels: how important? Science 326, 1397–1399 (2009).

    Article  CAS  Google Scholar 

  5. Crutzen, P.J., Mosier, A.R., Smith, K.A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008).

    Article  CAS  Google Scholar 

  6. Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  7. Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007).

    Article  CAS  Google Scholar 

  8. Hazelwood, L.A., Daran, J.M., van Maris, A.J.A., Pronk, J.T. & Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259–2266 (2008).

    Article  CAS  Google Scholar 

  9. Atsumi, S., Hanai, T. & Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    Article  CAS  Google Scholar 

  10. Zhang, K., Sawaya, M.R., Eisenberg, D.S. & Liao, J.C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA 105, 20653–20658 (2008).

    Article  CAS  Google Scholar 

  11. Steen, E.J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    Article  CAS  Google Scholar 

  12. Biebl, H., Menzel, K., Zeng, A.P. & Deckwer, W.D. Microbial production of 1, 3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999).

    Article  CAS  Google Scholar 

  13. Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W. & Preston, J.F. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53, 2420–2425 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pruss, B.M., Nelms, J.M., Park, C. & Wolfe, A.J. Mutations in NADH: ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J. Bacteriol. 176, 2143–2150 (1994).

    Article  CAS  Google Scholar 

  15. Connor, M.R., Cann, A.F. & Liao, J.C. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86, 1155–1164 (2010).

    Article  CAS  Google Scholar 

  16. Cann, A.F. & Liao, J.C. Pentanol isomer synthesis in engineered microorganisms. Appl. Microbiol. Biotechnol. 85, 893–899 (2010).

    Article  CAS  Google Scholar 

  17. Xavier, K.B. & Bassler, B.L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187, 238–248 (2005).

    Article  CAS  Google Scholar 

  18. DeLisa, M.P., Valdes, J.J. & Bentley, W.E. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. J. Bacteriol. 183, 2918–2928 (2001).

    Article  CAS  Google Scholar 

  19. Wang, L., Hashimoto, Y., Tsao, C.Y., Valdes, J.J. & Bentley, W.E. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J. Bacteriol. 187, 2066–2076 (2005).

    Article  CAS  Google Scholar 

  20. Neidhart, F.C. Escherichia coli and Salmonella (American Society for Microbiology, 1996).

    Google Scholar 

  21. Atkinson, M.R., Blauwkamp, T.A., Bondarenko, V., Studitsky, V. & Ninfa, A.J. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J. Bacteriol. 184, 5358–5363 (2002).

    Article  CAS  Google Scholar 

  22. Reitzer, L. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 57, 155–176 (2003).

    Article  CAS  Google Scholar 

  23. Atsumi, S. Wu. T.-Y., Eckl, E.-M., Hawkins, S.D., Buelter, T. & Liao, J.C. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Genet. Mol. Biotechnol. 85, 651–657 (2010).

    CAS  Google Scholar 

  24. Werpy, T. & Petersen, G., eds. Top Value Added Chemicals From Biomass, vol. I (Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Office of Biomass Program for the Office of the Biomass Program of US Department of Energy, 2004). <www1.eere.energy.gov/biomass/pdfs/35523.pdf>

    Google Scholar 

  25. Wan, M.Y., Wang, H.Y., Zhang, Y.Z. & Feng, H. Substrate specificity and thermostability of the dehairing alkaline protease from Bacillus pumilus. Appl. Biochem. Biotechnol. 159, 394–403 (2009).

    Article  CAS  Google Scholar 

  26. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  27. BD Biosciences. BD Bionutrients Technical Manual: Advanced Bioprocessing (Becton, Dickinson & Co., 2006). <http://www.bd.com/ds/technicalCenter/misc/br_3_2547.pdf>

  28. Ohshima, T. et al. The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Eur. J. Biochem. 222, 305–312 (1994).

    Article  CAS  Google Scholar 

  29. Atsumi, S., Higashide, W. & Liao, J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177–1180 (2009).

    Article  CAS  Google Scholar 

  30. Smith, K.M., Cho, K.M. & Liao, J.C. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Genet. Mol. Biotechnol. 87, 1045–1055 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by UCLA–Department of Energy Institute for Genomics and Proteomics.

Author information

Authors and Affiliations

Authors

Contributions

Y.-X.H. designed and performed experiments, designed the theoretical calculation, analyzed data and wrote the manuscript; K.M.C. designed and performed experiments and analyzed data; J.G.L.R. designed and performed theoretical calculation; E.M. performed part of the experiments in Table 1; C.R.S. performed the chemical mutagenesis; Y.Y. designed and performed carbon-flux driven biofuel production; J.C.L. designed experiments, theoretical calculation, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to James C Liao.

Ethics declarations

Competing interests

J.C.L. is a cofounder of Easel Biotechnoloiges, which licensed this technology from the University of California, Los Angeles.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figs. 1–11 (PDF 2087 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, YX., Cho, K., Rivera, J. et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29, 346–351 (2011). https://doi.org/10.1038/nbt.1789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1789

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research