Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of transcription by unnatural amino acids

Abstract

Small-molecule regulation of gene expression is intrinsic to cellular function and indispensable to the construction of new biological sensing, control and expression systems1,2. However, there are currently only a handful of strategies for engineering such regulatory components and fewer still that can give rise to an arbitrarily large set of inducible systems whose members respond to different small molecules, display uniformity and modularity in their mechanisms of regulation, and combine to actuate universal logics3,4,5,6,7,8. Here we present an approach for small-molecule regulation of transcription based on the combination of cis-regulatory leader-peptide elements with genetically encoded unnatural amino acids (amino acids that have been artificially added to the genetic code). In our system, any genetically encoded unnatural amino acid (UAA) can be used as a small-molecule attenuator or activator of gene transcription, and the logics intrinsic to the network defined by expanded genetic codes can be actuated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A representative molecular recognition network of expanded genetic codes, its integration with cis-regulatory leader-peptide elements and some possible uses of this platform.
Figure 2: Behavior of UAA-controlled transcriptional switches.
Figure 3: Control of transcriptional OFF and transcriptional ON switches with multiple UAAs.

Similar content being viewed by others

References

  1. Roth, A. & Breaker, R.R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    Article  CAS  Google Scholar 

  2. Keasling, J.D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    Article  CAS  Google Scholar 

  3. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  4. Callura, J.M. et al. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc. Natl. Acad. Sci. USA 107, 15898–15903 (2010).

    Article  CAS  Google Scholar 

  5. Yen, L. et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476 (2004).

    Article  CAS  Google Scholar 

  6. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  Google Scholar 

  7. Sharma, V., Nomura, Y. & Yokobayashi, Y. Engineering complex riboswitch regulation by dual genetic selection. J. Am. Chem. Soc. 130, 16310–16315 (2008).

    Article  CAS  Google Scholar 

  8. Anderson, J.C., Voigt, C.A. & Arkin, A.P. Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3, 133 (2007).

    Article  Google Scholar 

  9. Kolter, R. & Yanofsky, C. Attenuation in amino acid biosynthetic operons. Annu. Rev. Genet. 16, 113–134 (1982).

    Article  CAS  Google Scholar 

  10. Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002).

    Article  CAS  Google Scholar 

  11. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  12. Finking, R. & Marahiel, M.A. Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol. 58, 453–488 (2004).

    Article  CAS  Google Scholar 

  13. Zhang, K., Li, H., Cho, K.M. & Liao, J.C. Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc. Natl. Acad. Sci. USA 107, 6234–6239 (2010).

    Article  CAS  Google Scholar 

  14. Pédelacq, J.-D. et al. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  Google Scholar 

  15. Landick, R., Yanofsky, C., Choo, K. & Phun, L. Replacement of the Escherichia coli trp operon attenuation control codons alters operon expression. J. Mol. Biol. 216, 25–37 (1990).

    Article  CAS  Google Scholar 

  16. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    Article  CAS  Google Scholar 

  17. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  Google Scholar 

  18. Roesser, J.R., Nakamura, Y. & Yanofsky, C. Regulation of basal level expression of the tryptophan operon of Escherichia coli. J. Biol. Chem. 264, 12284–12288 (1989).

    CAS  PubMed  Google Scholar 

  19. Seidelt, B. et al. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326, 1412–1415 (2009).

    Article  CAS  Google Scholar 

  20. Chin, J.W. et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  21. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  Google Scholar 

  22. Neumann, H., Slusarczyk, A.L. & Chin, J.W. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J. Am. Chem. Soc. 132, 2142–2144 (2010).

    Article  CAS  Google Scholar 

  23. Anderson, J.C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566–7571 (2004).

    Article  CAS  Google Scholar 

  24. Neumann, H. et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    Article  CAS  Google Scholar 

  25. Wan, W. et al. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew. Chem. Int. Ed. 49, 3211–3214 (2010).

    Article  CAS  Google Scholar 

  26. Lucks, J.B., Qi, L., Whitaker, W.R. & Arkin, A.P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    Article  Google Scholar 

  27. Lu, T.K., Khalil, A.S. & Collins, J.J. Next-generation synthetic gene networks. Nat. Biotechnol. 27, 1139–1150 (2009).

    Article  CAS  Google Scholar 

  28. Naville, M. & Gautheret, D. Transcription attenuation in bacteria: theme and variations. Brief. Funct. Genomics Proteomics 8, 482–492 (2009).

    Article  CAS  Google Scholar 

  29. Lovett, P.S. & Rogers, E.J. Ribosome regulation by the nascent peptide. Microbiol. Rev. 60, 366–385 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morris, D.R. & Geballe, A.P. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol. 20, 8635–8642 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Schultz (The Scripps Research Institute) for thoughtful comments and the gift of the pEVOL plasmids. We thank J. Lucks for helpful discussions and advice. This work was funded by the National Science Foundation as part of the Synthetic Biology Engineering Research Center (A.P.A.) and the Miller Institute for Basic Scientific Research (C.C.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.C.L. conceived of the study and C.Y. and A.P.A. advised. All authors were involved in designing the experiments. C.C.L. and L.Q. performed the experiments and interpreted the data. C.C.L. and A.P.A. wrote the manuscript. All authors discussed results and commented on the manuscript.

Corresponding authors

Correspondence to Chang C Liu or Adam P Arkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion, Supplementary Sequences, Supplementary List of Plasmids and Supplementary Figs. 1–6 (PDF 4744 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Qi, L., Yanofsky, C. et al. Regulation of transcription by unnatural amino acids. Nat Biotechnol 29, 164–168 (2011). https://doi.org/10.1038/nbt.1741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1741

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research