Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi

Article metrics

Abstract

Short hairpin RNAs (shRNAs) are versatile tools for analyzing loss-of-function phenotypes in vitro and in vivo1. However, their use for studying genes involved in proliferation and survival, which are potential therapeutic targets in cancer and other diseases, is confounded by the strong selective advantage of cells in which shRNA expression is inefficient. We therefore developed a toolkit that combines Tet-regulated miR30-shRNA technology, robust transactivator expression and two fluorescent reporters to track and isolate cells with potent target knockdown. We demonstrated that this system improves the study of essential genes and was sufficiently robust to eradicate aggressive cancer in mice by suppressing a single gene. Further, we applied this system for in vivo negative-selection screening with pooled shRNAs and propose a streamlined, inexpensive workflow that will facilitate the use of RNA interference (RNAi) for the identification and evaluation of essential therapeutic targets.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dual-color TRMPV vectors enable Tet-regulated shRNA expression for suppression of genes involved in cell proliferation and survival.
Figure 2: TRMPV enables RNAi-based evaluation of genes involved in tumor maintenance in vivo.
Figure 3: TRMPV-induced suppression of Rpa3 cures clonal MLL-AF9;NrasG12D AML.
Figure 4: Pooled negative selection RNAi screening in vivo detects shRpa3 depletion in MLL-AF9;NrasG12D AML.

References

  1. 1

    Martin, S.E. & Caplen, N.J. Applications of RNA interference in mammalian systems. Annu. Rev. Genomics Hum. Genet. 8, 81–108 (2007).

  2. 2

    Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

  3. 3

    Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

  4. 4

    Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

  5. 5

    Hemann, M.T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400 (2003).

  6. 6

    Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

  7. 7

    Barbie, D.A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

  8. 8

    Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

  9. 9

    Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

  10. 10

    Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009).

  11. 11

    Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

  12. 12

    Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

  13. 13

    Lund, A.H., Duch, M. & Pedersen, F.S. Transcriptional silencing of retroviral vectors. J. Biomed. Sci. 3, 365–378 (1996).

  14. 14

    Ellis, J., Hotta, A. & Rastegar, M. Retrovirus silencing by an epigenetic TRIM. Cell 131, 13–14 (2007).

  15. 15

    Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476–483 (2008).

  16. 16

    Pikaart, M.J., Recillas-Targa, F. & Felsenfeld, G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12, 2852–2862 (1998).

  17. 17

    Agha-Mohammadi, S. et al. Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. J. Gene Med. 6, 817–828 (2004).

  18. 18

    Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

  19. 19

    Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

  20. 20

    Weinstein, I.B. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297, 63–64 (2002).

  21. 21

    Das, A.T. et al. Viral evolution as a tool to improve the tetracycline-regulated gene expression system. J. Biol. Chem. 279, 18776–18782 (2004).

  22. 22

    Meacham, C.E., Ho, E.E., Dubrovsky, E., Gertler, F.B. & Hemann, M.T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat. Genet. 41, 1133–1137 (2009).

  23. 23

    Silva, J.M. et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319, 617–620 (2008).

  24. 24

    Schlabach, M.R. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).

  25. 25

    Bassik, M.C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).

  26. 26

    Shin, K.J. et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc. Natl. Acad. Sci. USA 103, 13759–13764 (2006).

  27. 27

    Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

  28. 28

    Huesken, D. et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005).

  29. 29

    McCurrach, M.E. & Lowe, S.W. Methods for studying pro- and antiapoptotic genes in nonimmortal cells. Methods Cell Biol. 66, 197–227 (2001).

  30. 30

    Schmitt, C.A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002).

  31. 31

    Taylor, J., Schenck, I., Blankenberg, D. & Nekrutenko, A. Using Galaxy to perform large-scale interactive data analyses. Curr. Protoc. Bioinformatics 10, 10.15 (2007).

Download references

Acknowledgements

We thank R. Dickins and C. Miething for discussions in setting up this system, as well as A. Lujambio, A. Rappaport, M. Saborowski and C. Vakoc for testing TRMPV in other models. We also thank Y. Dou (Univ. of Michigan) for providing human MLL-AF9. We gratefully acknowledge B. Ma and S. Muller for excellent technical assistance. We also thank E. Hodges, K. Chang, M. Rooks and the McCombie laboratory for help with Solexa sequencing as well as A. Gordon for bioinformatics support. P. Moody and T. Spencer were of great assistance in flow cytometry. Finally, we thank S. Kogan for histology. This work was supported by the Howard Hughes Medical Institute, the Starr Foundation and the Don Monti Memorial Research Foundation. J.Z. is the Andrew Seligson Memorial Fellow at Cold Spring Harbor Laboratory, and K.M. is the Robert and Teresa Lindsay Fellow of the Watson School of Biological Sciences. L.E.D. is supported by an Overseas Biomedical Research Fellowship of the National Health and Medical Research Council of Australia.

Author information

J.Z. and K.M. designed and performed experiments. C.F. and L.E.D. contributed new reagents and performed experiments. M.J.T. managed mouse monitoring and husbandry. G.J.H. and S.W.L. supervised this project. J.Z., K.M. and S.W.L. wrote the paper.

Correspondence to Scott W Lowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 2 and Supplementary Figs. 1–8 (PDF 3418 kb)

Supplementary Table 1 (XLS 211 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

  • Targeting an RNA-Binding Protein Network in Acute Myeloid Leukemia

    • Eric Wang
    • , Sydney X. Lu
    • , Alessandro Pastore
    • , Xufeng Chen
    • , Jochen Imig
    • , Stanley Chun-Wei Lee
    • , Kathryn Hockemeyer
    • , Yohana E. Ghebrechristos
    • , Akihide Yoshimi
    • , Daichi Inoue
    • , Michelle Ki
    • , Hana Cho
    • , Lillian Bitner
    • , Andreas Kloetgen
    • , Kuan-Ting Lin
    • , Taisuke Uehara
    • , Takashi Owa
    • , Raoul Tibes
    • , Adrian R. Krainer
    • , Omar Abdel-Wahab
    •  & Iannis Aifantis

    Cancer Cell (2019)

  • A functional genetic screen defines the AKT-induced senescence signaling network

    • Keefe T. Chan
    • , Shaun Blake
    • , Haoran Zhu
    • , Jian Kang
    • , Anna S. Trigos
    • , Piyush B. Madhamshettiwar
    • , Jeannine Diesch
    • , Lassi Paavolainen
    • , Peter Horvath
    • , Ross D. Hannan
    • , Amee J. George
    • , Elaine Sanij
    • , Katherine M. Hannan
    • , Kaylene J. Simpson
    •  & Richard B. Pearson

    Cell Death & Differentiation (2019)

  • B-Raf deficiency impairs tumor initiation and progression in a murine breast cancer model

    • Martin Köhler
    • , Sophia Ehrenfeld
    • , Sebastian Halbach
    • , Manuel Lauinger
    • , Ulrike Burk
    • , Nadine Reischmann
    • , Shuofei Cheng
    • , Corinna Spohr
    • , Franziska Maria Uhl
    • , Natalie Köhler
    • , Kathrin Ringwald
    • , Sandra Braun
    • , Christoph Peters
    • , Robert Zeiser
    • , Thomas Reinheckel
    •  & Tilman Brummer

    Oncogene (2019)

  • Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity

    • Erin R. Aho
    • , Jing Wang
    • , Rocco D. Gogliotti
    • , Gregory C. Howard
    • , Jason Phan
    • , Pankaj Acharya
    • , Jonathan D. Macdonald
    • , Ken Cheng
    • , Shelly L. Lorey
    • , Bin Lu
    • , Sabine Wenzel
    • , Audra M. Foshage
    • , Joseph Alvarado
    • , Feng Wang
    • , J. Grace Shaw
    • , Bin Zhao
    • , April M. Weissmiller
    • , Lance R. Thomas
    • , Christopher R. Vakoc
    • , Matthew D. Hall
    • , Scott W. Hiebert
    • , Qi Liu
    • , Shaun R. Stauffer
    • , Stephen W. Fesik
    •  & William P. Tansey

    Cell Reports (2019)

  • Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis

    • Akihide Yoshimi
    • , Kuan-Ting Lin
    • , Daniel H. Wiseman
    • , Mohammad Alinoor Rahman
    • , Alessandro Pastore
    • , Bo Wang
    • , Stanley Chun-Wei Lee
    • , Jean-Baptiste Micol
    • , Xiao Jing Zhang
    • , Stephane de Botton
    • , Virginie Penard-Lacronique
    • , Eytan M. Stein
    • , Hana Cho
    • , Rachel E. Miles
    • , Daichi Inoue
    • , Todd R. Albrecht
    • , Tim C. P. Somervaille
    • , Kiran Batta
    • , Fabio Amaral
    • , Fabrizio Simeoni
    • , Deepti P. Wilks
    • , Catherine Cargo
    • , Andrew M. Intlekofer
    • , Ross L. Levine
    • , Heidi Dvinge
    • , Robert K. Bradley
    • , Eric J. Wagner
    • , Adrian R. Krainer
    •  & Omar Abdel-Wahab

    Nature (2019)