Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements

Abstract

Label-free biosensor technology based on dynamic mass redistribution (DMR) of cellular constituents promises to translate GPCR signaling into complex optical 'fingerprints' in real time in living cells. Here we present a strategy to map cellular mechanisms that define label-free responses, and we compare DMR technology with traditional second-messenger assays that are currently the state of the art in GPCR drug discovery. The holistic nature of DMR measurements enabled us to (i) probe GPCR functionality along all four G-protein signaling pathways, something presently beyond reach of most other assay platforms; (ii) dissect complex GPCR signaling patterns even in primary human cells with unprecedented accuracy; (iii) define heterotrimeric G proteins as triggers for the complex optical fingerprints; and (iv) disclose previously undetected features of GPCR behavior. Our results suggest that DMR technology will have a substantial impact on systems biology and systems pharmacology as well as for the discovery of drugs with novel mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic mass redistribution enables analysis of differential receptor-mediated G protein activation in CHO cells.
Figure 2: Dynamic mass redistribution visualizes signaling along the G12/G13 pathway.
Figure 3: Dynamic mass redistribution enables measurement of differential receptor-mediated G protein activation in HEK293 cells.
Figure 4: Parallel visualization of all signaling pathways unveils an additional signaling route of the free fatty acid receptor FFA1.
Figure 5: Dynamic mass redistribution enables analysis of GPCR functionality in immortalized and primary human keratinocytes.
Figure 6: The muscarinic M3 receptor adapts to adenylyl cyclase activation with a changed signaling repertoire.

Similar content being viewed by others

References

  1. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  2. Baker, J.G. & Hill, S.J. Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol. Sci. 28, 374–381 (2007).

    Article  CAS  Google Scholar 

  3. Bosier, B. & Hermans, E. Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol. Sci. 28, 438–446 (2007).

    Article  CAS  Google Scholar 

  4. Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007).

    Article  CAS  Google Scholar 

  5. Kenakin, T.P. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat. Rev. Drug Discov. 8, 617–626 (2009).

    Article  CAS  Google Scholar 

  6. Urban, J.D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).

    Article  CAS  Google Scholar 

  7. Kenakin, T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232–238 (1995).

    Article  CAS  Google Scholar 

  8. Ryberg, E. et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 152, 1092–1101 (2007).

    Article  CAS  Google Scholar 

  9. Eglen, R.M. Functional G protein-coupled receptor assays for primary and secondary screening. Comb. Chem. High Throughput Screen. 8, 311–318 (2005).

    Article  CAS  Google Scholar 

  10. Williams, C. cAMP detection methods in HTS: selecting the best from the rest. Nat. Rev. Drug Discov. 3, 125–135 (2004).

    Article  CAS  Google Scholar 

  11. Willoughby, D. & Cooper, D.M. Live-cell imaging of cAMP dynamics. Nat. Methods 5, 29–36 (2008).

    Article  CAS  Google Scholar 

  12. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105, 64–69 (2008).

    Article  CAS  Google Scholar 

  13. Hamdan, F.F., Audet, M., Garneau, P., Pelletier, J. & Bouvier, M. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based β-arrestin2 recruitment assay. J. Biomol. Screen. 10, 463–475 (2005).

    Article  CAS  Google Scholar 

  14. Lefkowitz, R.J. & Whalen, E.J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    Article  CAS  Google Scholar 

  15. Olson, K.R. & Eglen, R.M. β-galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev. Technol. 5, 137–144 (2007).

    Article  CAS  Google Scholar 

  16. Verkaar, F. et al. G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors. Biotechnol. Annu. Rev. 14, 253–274 (2008).

    Article  CAS  Google Scholar 

  17. Azzi, M. et al. β-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11406–11411 (2003).

    Article  CAS  Google Scholar 

  18. Galandrin, S. & Bouvier, M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 1575–1584 (2006).

    Article  CAS  Google Scholar 

  19. Hansen, J.L., Theilade, J., Haunso, S. & Sheikh, S.P. Oligomerization of wild type and nonfunctional mutant angiotensin II type I receptors inhibits Gαq protein signaling but not ERK activation. J. Biol. Chem. 279, 24108–24115 (2004).

    Article  CAS  Google Scholar 

  20. Hoffmann, C., Ziegler, N., Reiner, S., Krasel, C. & Lohse, M.J. Agonist-selective, receptor-specific interaction of human P2Y receptors with β-arrestin-1 and -2. J. Biol. Chem. 283, 30933–30941 (2008).

    Article  CAS  Google Scholar 

  21. Violin, J.D. & Lefkowitz, R.J. β-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    Article  CAS  Google Scholar 

  22. Fang, Y., Ferrie, A.M., Fontaine, N.H., Mauro, J. & Balakrishnan, J. Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91, 1925–1940 (2006).

    Article  CAS  Google Scholar 

  23. Fang, Y., Li, G. & Ferrie, A.M. Non-invasive optical biosensor for assaying endogenous G protein-coupled receptors in adherent cells. J. Pharmacol. Toxicol. Methods 55, 314–322 (2007).

    Article  CAS  Google Scholar 

  24. Fang, Y. & Ferrie, A.M. Optical biosensor differentiates signaling of endogenous PAR1 and PAR2 in A431 cells. BMC Cell Biol. 8, 24 (2007).

    Article  Google Scholar 

  25. Rocheville, M. & Jerman, J.C. 7TM pharmacology measured by label-free: a holistic approach to cell signalling. Curr. Opin. Pharmacol. 9, 643–649 (2009).

    Article  CAS  Google Scholar 

  26. Dodgson, K., Gedge, L., Murray, D.C. & Coldwell, M. A 100K well screen for a muscarinic receptor using the Epic label-free system—a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J. Recept. Signal Transduct. Res. 29, 163–172 (2009).

    Article  CAS  Google Scholar 

  27. Lee, P.H. et al. Evaluation of dynamic mass redistribution technology for pharmacological studies of recombinant and endogenously expressed G protein-coupled receptors. Assay Drug Dev. Technol. 6, 83–94 (2008).

    Article  Google Scholar 

  28. McGuinness, R.P. et al. Enhanced selectivity screening of GPCR ligands using a label-free cell based assay technology. Comb. Chem. High Throughput Screen. 12, 812–823 (2009).

    Article  CAS  Google Scholar 

  29. Peters, M.F., Vaillancourt, F., Heroux, M., Valiquette, M. & Scott, C.W. Comparing label-free biosensors for pharmacological screening with cell-based functional assays. Assay Drug Dev. Technol. 8, 219–227 (2010).

    Article  CAS  Google Scholar 

  30. Takasaki, J. et al. A novel Gαq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).

    Article  CAS  Google Scholar 

  31. Riobo, N.A. & Manning, D.R. Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol. Sci. 26, 146–154 (2005).

    Article  CAS  Google Scholar 

  32. Henstridge, C.M. et al. The GPR55 ligand l-α-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J. 23, 183–193 (2009).

    Article  CAS  Google Scholar 

  33. Ross, R.A. The enigmatic pharmacology of GPR55. Trends Pharmacol. Sci. 30, 156–163 (2009).

    Article  CAS  Google Scholar 

  34. Henstridge, C.M. et al. GPR55 ligands promote receptor coupling to multiple signalling pathways. Br. J. Pharmacol. 160, 604–614 (2010).

    Article  CAS  Google Scholar 

  35. Briscoe, C.P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).

    Article  CAS  Google Scholar 

  36. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  Google Scholar 

  37. Stoddart, L.A., Brown, A.J. & Milligan, G. Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5′-O-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol. Pharmacol. 71, 994–1005 (2007).

    Article  CAS  Google Scholar 

  38. Christiansen, E. et al. Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA(1)/GPR40), a potential target for the treatment of type II diabetes. J. Med. Chem. 51, 7061–7064 (2008).

    Article  CAS  Google Scholar 

  39. Zhang, J.Z., Maruyama, K., Iwatsuki, K., Ono, I. & Kaneko, F. Effects of prostaglandin E1 on human keratinocytes and dermal fibroblasts: a possible mechanism for the healing of skin ulcers. Exp. Dermatol. 3, 164–170 (1994).

    Article  CAS  Google Scholar 

  40. McGraw, D.W., Almoosa, K.F., Paul, R.J., Kobilka, B.K. & Liggett, S.B. Antithetic regulation by β-adrenergic receptors of Gq receptor sinaling via phospholipase C underlies the airway beta-agonist paradox. J. Clin. Invest. 112, 619–626 (2003).

    Article  CAS  Google Scholar 

  41. McGuinness, R. Impedance-based cellular assay technologies: recent advances, future promise. Curr. Opin. Pharmacol. 7, 535–540 (2007).

    Article  CAS  Google Scholar 

  42. Gaspard, N. et al. Generation of cortical neurons from mouse embryonic stem cells. Nat. Protoc. 4, 1454–1463 (2009).

    Article  CAS  Google Scholar 

  43. James, D. et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent. Nat. Biotechnol. 28, 161–166 (2010).

    Article  CAS  Google Scholar 

  44. Burford, N.T., Tobin, A.B. & Nahorski, S.R. Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate accumulation in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 274, 134–142 (1995).

    CAS  PubMed  Google Scholar 

  45. Schmidt, M., Nehls, C., Rumenapp, U. & Jakobs, K.H. m3 Muscarinic receptor-induced and Gi-mediated heterologous potentiation of phospholipase C stimulation: role of phosphoinositide synthesis. Mol. Pharmacol. 50, 1038–1046 (1996).

    CAS  PubMed  Google Scholar 

  46. Pantaloni, C. et al. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J. Biol. Chem. 271, 22146–22151 (1996).

    Article  CAS  Google Scholar 

  47. Antony, J. et al. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J. 23, 442–450 (2009).

    Article  CAS  Google Scholar 

  48. Jäger, D. et al. Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. J. Biol. Chem. 282, 34968–34976 (2007).

    Article  Google Scholar 

  49. Smith, N.J., Stoddart, L.A., Devine, N.M., Jenkins, L. & Milligan, G. The action and mode of Binding of thiazolidinedione ligands at free fatty acid receptor 1. J. Biol. Chem. 284, 17527–17539 (2009).

    Article  CAS  Google Scholar 

  50. Schröder, R. et al. The C-terminal tail of CRTH2 is a key molecular determinant that constrains Gαi and downstream signaling cascade activation. J. Biol. Chem. 284, 1324–1336 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank U. Rick, M. Vasmer-Ehses and T. Kögler for expert technical assistance and Corning Inc. for providing us with the Epic system. This work was supported by the DFG (Deutsche Forschungsgemeinschaft) grants KO 1582/3-1 to E.K., MO 821/2-1 to K.M. and WE 4428/1-1 to J.W. and by the Dr. Hilmer Foundation (PhD fellowship to S.H.). A.K. is a member of the DFG-funded Research Training School GRK 677. N.J.S is an NHMRC/NHF of Australia Overseas Research Fellow. We thank M. De Amici and U. Holzgrabe (University of Milan and University of Würzburg) for kindly providing Hybrid 1 (ref. 47), T. Ulven (University of Southern Denmark) for TUG424 (ref. 38) and Astellas Pharma Inc. (Osaka, Japan) for providing us with YM-254890 (ref. 30).

Author information

Authors and Affiliations

Authors

Contributions

R.S., N.J., J.S., A.K., N.M., S.H., A.M., S.B., M.M.-A. and N.J.S. designed and performed the experiments; E.K. and K.M. designed the research and wrote the manuscript; S.Z., J.W. and G.M. provided important biological samples or research tools; C.D., J.G., N.J.S., G.M. and R.S. provided important ideas and edited the manuscript.

Corresponding authors

Correspondence to Klaus Mohr or Evi Kostenis.

Ethics declarations

Competing interests

The Epic biosensor used in the procedure described in this article was provided to E.K. by Corning Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, R., Janssen, N., Schmidt, J. et al. Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28, 943–949 (2010). https://doi.org/10.1038/nbt.1671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1671

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research