Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe

A Corrigendum to this article was published on 07 December 2010

This article has been updated

Abstract

We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast—the only other eukaryote for which a comprehensive knockout library exists—revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion construction and gene dispensability.
Figure 2: Analysis of gene dispensability.
Figure 3: Comparative analysis of gene dispensability profiles of fission yeast.
Figure 4: Dispensability comparison of orthologous pairs from the two yeasts.
Figure 5: A comparison of the relative growth rates for the total set of heterozygous deletion diploids in fission yeast (4,334 genes) and budding yeast (5,921 genes).

Similar content being viewed by others

Change history

  • 07 December 2010

    In the version of this article initially published, the address of one of the authors, Young-Joo Jang, was incorrect. The correct address is Laboratory of Cell Cycle & Signal Transduction, WCU Department of NanoBioMedical Science, Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea.The error has been corrected in the HTML and PDF versions of the article.

References

  1. Jorgensen, P. et al. High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091–1099 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Entian, K.D. & Kotter, P. Methods in Microbiology 36, edn. II. 629–666 (Elsevier, 2007).

    Article  CAS  Google Scholar 

  6. Kittler, R. et al. Genome-scale RNAi profiling of cell division in human tissue culture cells. Nat. Cell Biol. 9, 1401–1412 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Fisk, D.G. et al. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 23, 857–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gregan, J. et al. Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr. Biol. 15, 1663–1669 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Martin-Castellanos, C. et al. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr. Biol. 15, 2056–2062 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Decottignies, A., Sanchez-Perez, I. & Nurse, P. Schizosaccharomyces pombe essential genes: a pilot study. Genome Res. 13, 399–406 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, H.O., Hutchison, C.A. III, Pfannkoch, C. & Venter, J.C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sipiczki, M. Where does fission yeast sit on the tree of life? Genome Biol. 1, reviews 1011.1–1011.4 (2000).

  15. Wood, V. Schizosaccharomyces pombe comparative genomics; from sequence to systems, in Comparative Genomics: Using Fungi as Models (eds. Sunnerhagen, P. & Piskur, J.), 233–285 (Springer Berlin, Heidelberg, 2006).

  16. Jeffares, D.C., Penkett, C.J. & Bahler, J. Rapidly regulated genes are intron poor. Trends Genet. 24, 375–378 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Matsuyama, A. et al. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Benton, M.J. & Ayala, F.J. Dating the tree of life. Science 300, 1698–1700 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hoskin, C.J., Higgie, M., McDonald, K.R. & Moritz, C. Reinforcement drives rapid allopatric speciation. Nature 437, 1353–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Harrison, R., Papp, B., Pal, C., Oliver, S.G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA 104, 2307–2312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiron, S., Suleau, A. & Bonnefoy, N. Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast. Genetics 169, 1891–1901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi, D.H., Oh, Y.M., Kwon, S.H. & Bae, S.H. The mutation of a novel Saccharomyces cerevisiae SRL4 gene rescues the lethality of rad53 and lcd1 mutations by modulating dNTP levels. J. Microbiol. 46, 75–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ralph, E., Boye, E. & Kearsey, S.E. DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. EMBO Rep. 7, 1134–1139 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, C. et al. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev. 17, 1130–1140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Preuss, D., Mulholland, J., Franzusoff, A., Segev, N. & Botstein, D. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol. Biol. Cell 3, 789–803 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ayscough, K., Hajibagheri, N.M., Watson, R. & Warren, G. Stacking of Golgi cisternae in Schizosaccharomyces pombe requires intact microtubules. J. Cell Sci. 106, 1227–1237 (1993).

    PubMed  Google Scholar 

  28. Roemer, T. et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50, 167–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pierce, S.E. et al. A unique and universal molecular barcode array. Nat. Methods 3, 601–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Jozwiak, J., Jozwiak, S. & Wlodarski, P. Possible mechanisms of disease development in tuberous sclerosis. Lancet Oncol. 9, 73–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, K.W., Lahad, J.P., Gray, J.W. & Mills, G.B. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 65, 2516–2519 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. McGowan, K.A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40, 963–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dixon, S.J. et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl. Acad. Sci. USA 105, 16653–16658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ravi, D. et al. A network of conserved damage survival pathways revealed by a genomic RNAi screen. PLoS Genet. 5, e1000527 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Styrkarsdottir, U., Egel, R. & Nielsen, O. The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion. Curr. Genet. 23, 184–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Elble, R. A simple and efficient procedure for transformation of yeasts. Biotechniques 13, 18–20 (1992).

    CAS  PubMed  Google Scholar 

  44. Boyle, E.I. et al. GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for their participation in the construction and analysis of the deletion mutants, particularly H.-R. Hwang, H.-S. Ahn, Y.-D. Kim, S. Park, H.-J. Lee, J.-H. Ahn, Y.-S. Kil, S.-Y. Park, J.-H. Lim, J.-H. Song, Y.-K. Ryoo, J.-Y. Kim, M.-J. Oh, S. Kong, J. Ahn, N. Sun, N. Peat, R. Mandeville and J.-J. Li. We also thank J.-H. Roe and W.-K. Huh for reading this manuscript and for their insightful comments and O. Nielsen for his patience with the many requests for pON177. This work was supported by the intramural research program of KRIBB (Mission 2007), the Chemical Genomics Research Program and the 21st Century Frontier Research Program from the Ministry of Education, Science and Technology (MOEST) of Korea. This work was also supported by Bioneer Corp., The Wellcome Trust, Cancer Research UK, The Breast Cancer Research Foundation (BCRF) and The Rockefeller University.

Author information

Authors and Affiliations

Authors

Contributions

D.-U.K., J.H., H.-O.P., M.W., H.-S.Y., P.N. and K.-L.H. conceived the project; D.-U.K., J.H., D.K., V.W., M.W., T.D., M.N., G.P., S.H., L.J., S.-T.B., H.L., Y.S.S., M.L., L.K., K.-S.H., E.J.N., A.-R.L., Y.-J.J., K.-S.C., S.-J.C., J.-Y.P., Y.P., H.M.K., S.-K.P., H.B.K., H.-S.K., H.-M.P., K.K., K.S. and K.B.S. performed experiments and data analysis; D.K., H.-J.P., E.-J.K. and H.-M.P. performed primer design; D.K. and V.W. performed bioinformatics; D.-U.K., J.H., D.K., V.W., P.N. and K.-L.H. wrote the paper.

Corresponding author

Correspondence to Kwang-Lae Hoe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 2–10,12–14,18 Supplementary Figs. 1–10 and Supplementary Methods (PDF 4821 kb)

Supplementary Table 1

The 4,836 deletion set in fission yeast and its genome dataset as a reference (4,914) (XLS 2317 kb)

Supplementary Table 11

Spreadsheet of 2,438 'one to one' orthologous pairs in fission yeast and budding yeast (for details, see attached Excel file) (XLS 572 kb)

Supplementary Table 15

Growth fitness data of S. pombe heterozygous deletion mutants in rich YE media (XLS 1347 kb)

Supplementary Table 16

List of slow growers from the two yeasts, whose relative fitness is less than 0.97 (XLS 260 kb)

Supplementary Table 17

List of haploinsufficient (lowest 3% ranked by RF) and haploproficient (highest 3% ranked by RF) genes from the two yeasts in rich media (XLS 217 kb)

Supplementary Data 1

All the primer set for the construction of deletion strains (XLS 3027 kb)

Supplementary Data 2

Mapping of the deletions (PDF 19502 kb)

Supplementary Data 3

Sequence of KanMX4 (PDF 231 kb)

Supplementary Data 4

Design of Affymertix custom GeneChip (XLS 1653 kb)

Supplementary Data 5

Microarray data set for growth profiling (ZIP 10612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DU., Hayles, J., Kim, D. et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28, 617–623 (2010). https://doi.org/10.1038/nbt.1628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1628

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research