Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model

Abstract

MicroRNAs (miRNAs) are increasingly implicated in the regulation of metastasis. Despite their potential as targets for anti-metastatic therapy, miRNAs have only been silenced in normal tissues of rodents and nonhuman primates. Therefore, the development of effective approaches for sequence-specific inhibition of miRNAs in tumors remains a scientific and clinical challenge. Here we show that systemic treatment of tumor-bearing mice with miR-10b antagomirs—a class of chemically modified anti-miRNA oligonucleotide—suppresses breast cancer metastasis. Both in vitro and in vivo, silencing of miR-10b with antagomirs significantly decreases miR-10b levels and increases the levels of a functionally important miR-10b target, Hoxd10. Administration of miR-10b antagomirs to mice bearing highly metastatic cells does not reduce primary mammary tumor growth but markedly suppresses formation of lung metastases in a sequence-specific manner. The miR-10b antagomir, which is well tolerated by normal animals, appears to be a promising candidate for the development of new anti-metastasis agents.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Antagomir-10b can be directly delivered to tumor cells in vitro and can inhibit cell motility and invasiveness.
Figure 2: The metastasis-suppressing effect of antagomir-10b is sequence-specific.
Figure 3: 'Sponge'-mediated silencing of miR-10b in tumor cells is sufficient to inhibit metastasis.
Figure 4: Antagomir-10b treatment does not affect late stages of the metastatic process.
Figure 5: Toxicity assessment following intravenous delivery of antagomir-10b in normal mice.

References

  1. 1

    Fidler, I.J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Ma, L. & Weinberg, R.A. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 24, 448–456 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Nicoloso, M.S., Spizzo, R., Shimizu, M., Rossi, S. & Calin, G.A. MicroRNAs—the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9, 293–302 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Steeg, P.S. & Theodorescu, D. Metastasis: a therapeutic target for cancer. Nat. Clin. Pract. Oncol. 5, 206–219 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Romond, E.H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Piccart-Gebhart, M.J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Yang, J.C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Article  Google Scholar 

  11. 11

    He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Ma, L., Teruya-Feldstein, J. & Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Tavazoie, S.F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Asangani, I.A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Edmonds, M.D. et al. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int. J. Cancer 125, 1778–1785 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Gee, H.E. et al. MicroRNA-10b and breast cancer metastasis. Nature 455, E8–E9; author reply, 455, E9 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Baffa, R. et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol. 219, 214–221 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. J. Am. Med. Assoc. 297, 1901–1908 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Ciafre, S.A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351–1358 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Hao-Xiang, T. et al. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med. Oncol. published online, doi:10.1007/s12032-009-9264-2 (2 July 2009).

  26. 26

    Sasayama, T., Nishihara, M., Kondoh, T., Hosoda, K. & Kohmura, E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int. J. Cancer 125, 1407–1413 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Krutzfeldt, J. et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35, 2885–2892 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  29. 29

    Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Aslakson, C.J. & Miller, F.R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  Google Scholar 

  32. 32

    Davis, S. et al. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res. 37, 70–77 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Wurdinger, T. et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14, 382–393 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Yi, R., Poy, M.N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 452, 225–229 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Iorio, M.V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Weiss, F.U. et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137, 2136–2145 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Dykxhoorn, D.M. et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4, e7181 (2009).

    Article  Google Scholar 

  40. 40

    Bernards, R. & Weinberg, R.A. A progression puzzle. Nature 418, 823 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Talmadge, J.E. Clonal selection of metastasis within the life history of a tumor. Cancer Res. 67, 11471–11475 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Scheel, C., Onder, T., Karnoub, A. & Weinberg, R.A. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 67, 11476–11479; discussion, 67, 11479–11480 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Krichevsky, A.M. & Gabriely, G. miR-21: a small multi-faceted RNA. J. Cell. Mol. Med. 13, 39–53 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Wang, P. et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 69, 8157–8165 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Park, J.K., Lee, E.J., Esau, C. & Schmittgen, T.D. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Huse, J.T. & Holland, E.C. Yin and yang: cancer-implicated miRNAs that have it both ways. Cell Cycle 8, 3611–3612 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C.L. Daige at Regulus for technical assistance, M. Ebert, P. Sharp and S. Valastyan for advice on miRNA sponge design, the Histology Core Labs at Massachusetts Institute of Technology (MIT) and Memorial Sloan-Kettering Cancer Center for assistance with histology, B. Bierie and other members of the Weinberg Lab for useful discussions. L.M. is a recipient of a Life Sciences Research Foundation Fellowship, a Margaret and Herman Sokol Award and a National Institutes of Health (NIH) Pathway to Independence Award (K99/R00). R.A.W. is an American Cancer Society Research Professor and a D.K. Ludwig Cancer Research Professor. This research is supported by an NIH grant to R.A.W. and the Ludwig Center for Molecular Oncology at MIT.

Author information

Affiliations

Authors

Contributions

R.A.W. supervised research. L.M., J.S. and E.G.M. designed experiments. J.S., B.B. and E.G.M. provided antagomirs and conditions. L.M., F.R. and E.P. performed most of the experiments. E.G.M. led toxicity assessment at Regulus. J.T.-F. performed pathological analysis. G.W.B. contributed to graphics and statistical analysis. L.M. and R.A.W. wrote the manuscript.

Corresponding author

Correspondence to Robert A Weinberg.

Ethics declarations

Competing interests

J.S., B.B. and E.M. are employees of Regulus Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6 (PDF 13954 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, L., Reinhardt, F., Pan, E. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28, 341–347 (2010). https://doi.org/10.1038/nbt.1618

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing