Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chimeric mouse tumor models reveal differences in pathway activation between ERBB family– and KRAS-dependent lung adenocarcinomas

Abstract

To recapitulate the stochastic nature of human cancer development, we have devised a strategy for generating mouse tumor models that involves stepwise genetic manipulation of embryonic stem (ES) cells and chimera generation. Tumors in the chimeric animals develop from engineered cells in the context of normal tissue. Adenocarcinomas arising in an allelic series of lung cancer models containing HER2 (also known as ERBB2), KRAS or EGFR oncogenes exhibit features of advanced malignancies. Treatment of EGFRL858R and KRASG12V chimeric models with an EGFR inhibitor resulted in near complete tumor regression and no response to the treatment, respectively, accurately reflecting previous clinical observations. Transcriptome and immunohistochemical analyses reveal that PI3K pathway activation is unique to ERBB family tumors whereas KRAS-driven tumors show activation of the JNK/SAP pathway, suggesting points of therapeutic intervention for this difficult-to-treat tumor category.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of inducible transgenic HER2 expression in the lung.
Figure 2: Illustration of the chimeric mouse tumor model approach.
Figure 3: In vitro and in vivo analysis of model ES cell lines and chimeric mice.
Figure 4: Characterization of lung tumors in lung HER2V659E chimeric mice.
Figure 5: Differential response of EGFRL858R- and KRASG12V-dependent tumors to the irreversible EGFR inhibitor AV412.
Figure 6: Signaling pathway comparison in KRASG12V-, HER2V659E- and EGFRL858R-dependent lung tumors.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Weinberg, R.A. . The Biology of Cancer (Garland Science, New York, 2007).

  2. Forbes, S.A. et al. The catalogue of somatic mutations in cancer (COSMIC). in Current Protocols in Human Genetics (Wiley, Hoboken, New Jersery, USA, 2008).

    Google Scholar 

  3. Kumar, A., Petri, E.T., Halmos, B. & Boggon, T.J. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J. Clin. Oncol. 26, 1742–1751 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2, e17 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Engelman, J.A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bell, D.W. et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat. Genet. 37, 1315–1316 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Engelman, J.A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Sergina, N.V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stommel, J.M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kosaka, T. et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 64, 8919–8923 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, M. et al. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer 106, 2200–2207 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Moody, S.E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Fisher, G.H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249–3262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perl, A.K., Tichelaar, J.W. & Whitsett, J.A. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res. 11, 21–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Singh, B. et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 16, 984–993 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki, T. et al. Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor. Cancer Sci. 98, 1977–1984 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, S. et al. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res. 65, 7096–7101 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20, 1496–1510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eberhard, D.A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat. Genet. 37, 48–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sharpless, N.E. & Depinho, R.A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Quesada, A.R., Medina, M.A. & Alba, E. Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays 29, 1159–1168 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Bhargava, M. et al. Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ. 3, 11–20 (1992).

    CAS  PubMed  Google Scholar 

  29. Rong, S. et al. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol. Cell. Biol. 12, 5152–5158 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dankort, D. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis, B.C., Klimstra, D.S. & Varmus, H.E. The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev. 17, 3127–3138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pao, W., Klimstra, D.S., Fisher, G.H. & Varmus, H.E. Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proc. Natl. Acad. Sci. USA 100, 8764–8769 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daley, G.Q., Van Etten, R.A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Heard, J.M., Roussel, M.F., Rettenmier, C.W. & Sherr, C.J. Multilineage hematopoietic disorders induced by transplantation of bone marrow cells expressing the v-fms oncogene. Cell 51, 663–673 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edwards, P.A., Hiby, S.E., Papkoff, J. & Bradbury, J.M. Hyperplasia of mouse mammary epithelium induced by expression of the Wnt-1 (int-1) oncogene in reconstituted mammary gland. Oncogene 7, 2041–2051 (1992).

    CAS  PubMed  Google Scholar 

  37. Wu, M. et al. Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proc. Natl. Acad. Sci. USA 106, 7022–7027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greulich, H. et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2, e313 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Jackman, D.M. et al. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin. Cancer Res. 15, 5267–5273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Junttila, T.T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15, 429–440 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Kollipara, I. Agekeum, Q. Xiao, D. Potz, K. Jesmer, Q. Shen, J. Brodeur and A. Cooper for their expert technical help. We also thank K. Garland, P. Bains-Vallee and S. Perry for excellent animal research support. The CCSP-rtTA construct was provided by J. Whitsett at the University of Cincinnati. Finally, we are grateful to R. O'Hagan for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. established ES cell lines, analyzed the expression data and participated in data interpretation. W.M.R. established ES cell lines, chimeras and participated in data interpretation. T.Z. performed and analyzed immunohistochemistry. A.B. phenotyped and analyzed all mice. S.R. cloned all vectors and targeting constructs. R.R. established chimeric mice and phenotyped mice. J.-K.W. performed and analyzed RT-PCR and luciferase assays. J.W.H. established HER2 transgenic mice. M.B. performed all pathology analysis. L.C., M.I.C., S.C.C., R.A.D. and M.O.R. participated in the planning and data interpretation. T.J. and J.H. conceived the chimera model and participated in planning and data analysis. W.M.R., Y.Z., R.A.D. and J.H. wrote the manuscript and all authors edited it.

Corresponding author

Correspondence to Joerg Heyer.

Ethics declarations

Competing interests

Y.Z., W.R., T.Z., A.B., I.C., S.C., M.R. and J.H. are employed by AVEO Pharmaceuticals. S.R., R.R. and J.K.W. are former employees of AVEO Pharmaceuticals. J.W.H. and M.B. are consultants to AVEO Pharmaceuticals. L.C., T.J. and R.D.P. are founders and advisors to AVEO Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4 and Supplementary Tables 1,2 (PDF 1982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Rideout, W., Zi, T. et al. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family– and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 28, 71–78 (2010). https://doi.org/10.1038/nbt.1595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing