Perspective | Published:

Next-generation synthetic gene networks

Nature Biotechnology volume 27, pages 11391150 (2009) | Download Citation

Subjects

Abstract

Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field's first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems and frameworks for the reliable construction and operation of complex, higher-order networks. As these challenges are addressed, synthetic biologists will be able to construct useful next-generation synthetic gene networks with real-world applications in medicine, biotechnology, bioremediation and bioenergy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

  2. 2.

    & A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

  3. 3.

    et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

  4. 4.

    , , & Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100, 7714–7719 (2003).

  5. 5.

    , , & A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol. Bioeng. 94, 1–4 (2006).

  6. 6.

    , , & Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS ONE 3, e2815 (2008).

  7. 7.

    , & A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130, 363–372 (2007).

  8. 8.

    et al. Rational design of memory in eukaryotic cells. Genes Dev. 21, 2271–2276 (2007).

  9. 9.

    et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

  10. 10.

    et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

  11. 11.

    et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

  12. 12.

    , , & A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

  13. 13.

    et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801 (2007).

  14. 14.

    & Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

  15. 15.

    , , , & A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

  16. 16.

    , & Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102, 3581–3586 (2005).

  17. 17.

    et al. An externally tunable bacterial band-pass filter. Proc. Natl. Acad. Sci. USA 106, 10135–10140 (2009).

  18. 18.

    & Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

  19. 19.

    et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

  20. 20.

    & A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 104, 14283–14288 (2007).

  21. 21.

    , , & Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).

  22. 22.

    , & Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

  23. 23.

    et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

  24. 24.

    , , & Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

  25. 25.

    et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

  26. 26.

    , , & Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

  27. 27.

    & Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104, 11197–11202 (2007).

  28. 28.

    & Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106, 4629–4634 (2009).

  29. 29.

    et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

  30. 30.

    , & Writing DNA with GenoCAD. Nucleic Acids Res. 37, W40–W47 (2009).

  31. 31.

    et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

  32. 32.

    , & Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

  33. 33.

    & Genome engineering. Nat. Biotechnol. 27, 1151–1162 (2009).

  34. 34.

    et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

  35. 35.

    & The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

  36. 36.

    , , & Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

  37. 37.

    et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

  38. 38.

    , & Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

  39. 39.

    et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214 (2003).

  40. 40.

    et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

  41. 41.

    , & Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

  42. 42.

    , & Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).

  43. 43.

    , & Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

  44. 44.

    & Directed evolution of the site specificity of Cre recombinase. Proc. Natl. Acad. Sci. USA 99, 4185–4190 (2002).

  45. 45.

    & Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).

  46. 46.

    , , & The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol. Syst. Biol. 4, 203 (2008).

  47. 47.

    , , & Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

  48. 48.

    , & Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

  49. 49.

    , & Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol. 24, 53–55 (2006).

  50. 50.

    & Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–195 (1998).

  51. 51.

    , & Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA 104, 12726–12731 (2007).

  52. 52.

    , & Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

  53. 53.

    et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

  54. 54.

    , , , & Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. USA 106, 5123–5128 (2009).

  55. 55.

    , & TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3, 19 (2009).

  56. 56.

    Computational methods in synthetic biology. Biotechnol. J. 4, 1392–1405 (2009).

  57. 57.

    , , & Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet. 2, 268–279 (2001).

  58. 58.

    et al. Single M13 bacteriophage tethering and stretching. Proc. Natl. Acad. Sci. USA 104, 4892–4897 (2007).

  59. 59.

    & Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

  60. 60.

    , & Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

  61. 61.

    et al. Kinesin's cover-neck bundle folds forward to generate force. Proc. Natl. Acad. Sci. USA 105, 19247–19252 (2008).

  62. 62.

    & Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

  63. 63.

    et al. Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol. 73, 5711–5715 (2007).

  64. 64.

    et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6 Suppl 4, S493–S506 (2009).

  65. 65.

    & Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628–638 (2009).

  66. 66.

    , & Frequency domain analysis of noise in autoregulated gene circuits. Proc. Natl. Acad. Sci. USA 100, 4551–4556 (2003).

  67. 67.

    , , & The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484 (2008).

  68. 68.

    et al. Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119–1122 (2008).

  69. 69.

    et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460, 762–765 (2009).

  70. 70.

    et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

  71. 71.

    , & A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128, 8738–8739 (2006).

  72. 72.

    et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

  73. 73.

    , , , & Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

  74. 74.

    , , , & Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

  75. 75.

    et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. USA 106, 13780–13784 (2009).

  76. 76.

    & Engineering of synthetic mammalian gene networks. Chem. Biol. 16, 287–297 (2009).

  77. 77.

    et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

  78. 78.

    et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA 103, 425–430 (2006).

  79. 79.

    et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

  80. 80.

    et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696 (2009).

  81. 81.

    , & Towards the automated engineering of a synthetic genome. Mol. Biosyst. 5, 733–743 (2009).

  82. 82.

    & A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

  83. 83.

    , , & Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25, 770–777 (2007).

  84. 84.

    & Synthesis of orthogonal transcription-translation networks. Proc. Natl. Acad. Sci. USA 106, 8477–8482 (2009).

  85. 85.

    , & Expanding the genetic code for biological studies. Chem. Biol. 16, 323–336 (2009).

  86. 86.

    et al. RNAi in Budding Yeast. Science 326, 544–550 (2009).

  87. 87.

    & Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res. 31, 1407–1415 (2003).

  88. 88.

    et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

  89. 89.

    , , , & Noise shaping in populations of coupled model neurons. Proc. Natl. Acad. Sci. USA 96, 10450–10455 (1999).

  90. 90.

    , & Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

  91. 91.

    , , , & A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

  92. 92.

    et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

  93. 93.

    , & Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

  94. 94.

    , , & A molecular noise generator. Phys. Biol. 5, 036006 (2008).

  95. 95.

    et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

  96. 96.

    , & Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

  97. 97.

    et al. Molecular circuits for associative learning in single-celled organisms. J. R. Soc. Interface 6, 463–469 (2009).

  98. 98.

    , , & Designing sequential transcription logic: a simple genetic circuit for conditional memory. Syst. Synth. Biol. 1, 89–98 (2007).

  99. 99.

    , & Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

  100. 100.

    et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

  101. 101.

    , , & Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).

  102. 102.

    & An error-prone T7 RNA polymerase mutant generated by directed evolution. ChemBioChem 2, 212–219 (2001).

  103. 103.

    , , , & Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

  104. 104.

    , & Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

  105. 105.

    , , & Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

  106. 106.

    , , & Engineered single- and multi-cell chemotaxis pathways in E. coli. Mol. Syst. Biol. 5, 283 (2009).

  107. 107.

    & Creating a protein-based element of inheritance. Science 287, 661–664 (2000).

  108. 108.

    , , , & A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

  109. 109.

    , & MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

  110. 110.

    et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

  111. 111.

    et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009).

  112. 112.

    , , & Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA 99, 679–684 (2002).

  113. 113.

    , & Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101, 10955–10960 (2004).

  114. 114.

    & Scalable hybrid computation with spikes. Neural Comput. 14, 2003–2038 (2002).

  115. 115.

    et al. Suicidal genetic elements and their use in biological containment of bacteria. Annu. Rev. Microbiol. 47, 139–166 (1993).

  116. 116.

    , , & Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

  117. 117.

    , & Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res. 34, 5670–5682 (2006).

  118. 118.

    et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

  119. 119.

    & Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666–670 (2008).

  120. 120.

    & Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol. 63, 501–521 (2009).

  121. 121.

    , , , & Mechanosensitive channels in bacteria: signs of closure? Nat. Rev. Microbiol. 5, 431–440 (2007).

  122. 122.

    , , , & The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997).

  123. 123.

    , , , & Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3, e2719 (2008).

  124. 124.

    et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

  125. 125.

    , , , & Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

  126. 126.

    et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

  127. 127.

    et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

  128. 128.

    et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

  129. 129.

    et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

  130. 130.

    , , & Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 259, 16–27 (2008).

  131. 131.

    et al. Nanoparticle self-assembly gated by logical proteolytic triggers. J. Am. Chem. Soc. 129, 6064–6065 (2007).

  132. 132.

    Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

  133. 133.

    et al. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341–355 (2009).

  134. 134.

    et al. Spider silk and amyloid fibrils: a structural comparison. Macromol. Biosci. 7, 183–188 (2007).

  135. 135.

    , , & Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

  136. 136.

    et al. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 309 (2009).

  137. 137.

    & Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–635 (2004).

  138. 138.

    & Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc. Natl. Acad. Sci. USA 105, 2319–2324 (2008).

  139. 139.

    et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

Download references

Acknowledgements

We would like to thank the Howard Hughes Medical Institute and the National Institutes of Health Director's Pioneer Award Program for their financial support. We also thank the reviewers for their insights and suggestions.

Author information

Affiliations

  1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

    • Timothy K Lu
  2. Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, USA.

    • Timothy K Lu
  3. Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics, and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts, USA.

    • Timothy K Lu
    • , Ahmad S Khalil
    •  & James J Collins
  4. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.

    • James J Collins

Authors

  1. Search for Timothy K Lu in:

  2. Search for Ahmad S Khalil in:

  3. Search for James J Collins in:

Competing interests

T.K.L. and J.J.C. have filed technology disclosures with their respective institutions for intellectual property protection covering several of the next-generation gene networks.

Corresponding author

Correspondence to Timothy K Lu.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nbt.1591

Further reading