Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Next-generation synthetic gene networks

Abstract

Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field's first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems and frameworks for the reliable construction and operation of complex, higher-order networks. As these challenges are addressed, synthetic biologists will be able to construct useful next-generation synthetic gene networks with real-world applications in medicine, biotechnology, bioremediation and bioenergy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunable genetic filter.
Figure 2: Genetic signal converters.
Figure 3: Adaptive learning networks.
Figure 4: Amyloid-based memory.
Figure 5: Cell-cycle counter for biological containment.
Figure 6: Autonomous chemotaxis.

Similar content being viewed by others

References

  1. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kramer, B.P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Isaacs, F.J., Hasty, J., Cantor, C.R. & Collins, J.J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ham, T.S., Lee, S.K., Keasling, J.D. & Arkin, A.P. A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol. Bioeng. 94, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ham, T.S., Lee, S.K., Keasling, J.D. & Arkin, A.P. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS ONE 3, e2815 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Deans, T.L., Cantor, C.R. & Collins, J.J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130, 363–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ajo-Franklin, C.M. et al. Rational design of memory in eukaryotic cells. Genes Dev. 21, 2271–2276 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedland, A.E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tigges, M., Marquez-Lago, T.T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102, 3581–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sohka, T. et al. An externally tunable bacterial band-pass filter. Proc. Natl. Acad. Sci. USA 106, 10135–10140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bayer, T.S. & Smolke, C.D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Win, M.N. & Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 104, 14283–14288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. You, L., Cox, R.S. III, Weiss, R. & Arnold, F.H. Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ellis, T., Wang, X. & Collins, J.J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levskaya, A. et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tabor, J.J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Anderson, J.C., Clarke, E.J., Arkin, A.P. & Voigt, C.A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, T.K. & Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104, 11197–11202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, T.K. & Collins, J.J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106, 4629–4634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Czar, M.J., Cai, Y. & Peccoud, J. Writing DNA with GenoCAD. Nucleic Acids Res. 37, W40–W47 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guido, N.J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Shetty, R.P., Endy, D. & Knight, T.F. Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Carr, P.A. & Church, G.M. Genome engineering. Nat. Biotechnol. 27, 1151–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Lucks, J.B., Qi, L., Whitaker, W.R. & Arkin, A.P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    Article  PubMed  Google Scholar 

  37. Maeder, M.L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beerli, R.R., Dreier, B. & Barbas, C.F. III. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, K.S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Win, M.N., Liang, J.C. & Smolke, C.D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buchholz, F., Angrand, P.O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Santoro, S.W. & Schultz, P.G. Directed evolution of the site specificity of Cre recombinase. Proc. Natl. Acad. Sci. USA 99, 4185–4190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Groth, A.C. & Calos, M.P. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan, S., Bren, A., Dekel, E. & Alon, U. The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol. Syst. Biol. 4, 203 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cox, R.S. III, Surette, M.G. & Elowitz, M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. Hammer, K., Mijakovic, I. & Jensen, P.R. Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol. 24, 53–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Jensen, P.R. & Hammer, K. Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Murphy, K.F., Balazsi, G. & Collins, J.J. Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA 104, 12726–12731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andersen, J.B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K. & Balazsi, G. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. USA 106, 5123–5128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chandran, D., Bergmann, F.T. & Sauro, H.M. TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3, 19 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kaznessis, Y.N. Computational methods in synthetic biology. Biotechnol. J. 4, 1392–1405 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hasty, J., McMillen, D., Isaacs, F. & Collins, J.J. Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet. 2, 268–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Khalil, A.S. et al. Single M13 bacteriophage tethering and stretching. Proc. Natl. Acad. Sci. USA 104, 4892–4897 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Bustamante, C., Bryant, Z. & Smith, S.B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Khalil, A.S. et al. Kinesin's cover-neck bundle folds forward to generate force. Proc. Natl. Acad. Sci. USA 105, 19247–19252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, S.K. et al. Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol. 73, 5711–5715 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gulati, S. et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6 Suppl 4, S493–S506 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bennett, M.R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628–638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simpson, M.L., Cox, C.D. & Sayler, G.S. Frequency domain analysis of noise in autoregulated gene circuits. Proc. Natl. Acad. Sci. USA 100, 4551–4556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mettetal, J.T., Muzzey, D., Gomez-Uribe, C. & van Oudenaarden, A. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bennett, M.R. et al. Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119–1122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Malmstrom, J. et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460, 762–765 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, J., Xie, J. & Schultz, P.G. A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128, 8738–8739 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hamad-Schifferli, K., Schwartz, J.J., Santos, A.T., Zhang, S. & Jacobson, J.M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    Article  PubMed  Google Scholar 

  74. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. USA 106, 13780–13784 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weber, W. & Fussenegger, M. Engineering of synthetic mammalian gene networks. Chem. Biol. 16, 287–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Gibson, D.G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Glass, J.I. et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA 103, 425–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Carrera, J., Rodrigo, G. & Jaramillo, A. Towards the automated engineering of a synthetic genome. Mol. Biosyst. 5, 733–743 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Rackham, O. & Chin, J.W. A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, K., Neumann, H., Peak-Chew, S.Y. & Chin, J.W. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25, 770–777 (2007).

    Article  PubMed  CAS  Google Scholar 

  84. An, W. & Chin, J.W. Synthesis of orthogonal transcription-translation networks. Proc. Natl. Acad. Sci. USA 106, 8477–8482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, Q., Parrish, A.R. & Wang, L. Expanding the genetic code for biological studies. Chem. Biol. 16, 323–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Drinnenberg, I.A. et al. RNAi in Budding Yeast. Science 326, 544–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yoon, Y.G. & Koob, M.D. Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res. 31, 1407–1415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Austin, D.W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Mar, D.J., Chow, C.C., Gerstner, W., Adams, R.W. & Collins, J.J. Noise shaping in populations of coupled model neurons. Proc. Natl. Acad. Sci. USA 96, 10450–10455 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McGinness, K.E., Baker, T.A. & Sauer, R.T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Macarthur, B.D., Ma'ayan, A. & Lemischka, I.R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, T., Ferry, M., Weiss, R. & Hasty, J. A molecular noise generator. Phys. Biol. 5, 036006 (2008).

    Article  PubMed  CAS  Google Scholar 

  95. Blake, W.J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fernando, C.T. et al. Molecular circuits for associative learning in single-celled organisms. J. R. Soc. Interface 6, 463–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Fritz, G., Buchler, N.E., Hwa, T. & Gerland, U. Designing sequential transcription logic: a simple genetic circuit for conditional memory. Syst. Synth. Biol. 1, 89–98 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tagkopoulos, I., Liu, Y.C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mitchell, A. et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, D.K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Brakmann, S. & Grzeszik, S. An error-prone T7 RNA polymerase mutant generated by directed evolution. ChemBioChem 2, 212–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Yeh, B.J., Rutigliano, R.J., Deb, A., Bar-Sagi, D. & Lim, W.A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Dueber, J.E., Mirsky, E.A. & Lim, W.A. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Bashor, C.J., Helman, N.C., Yan, S. & Lim, W.A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Goldberg, S.D., Derr, P., DeGrado, W.F. & Goulian, M. Engineered single- and multi-cell chemotaxis pathways in E. coli. Mol. Syst. Biol. 5, 283 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661–664 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bhalla, U.S., Ram, P.T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Tsai, T.Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stavreva, D.A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McMillen, D., Kopell, N., Hasty, J. & Collins, J.J. Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA 99, 679–684 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Garcia-Ojalvo, J., Elowitz, M.B. & Strogatz, S.H. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101, 10955–10960 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sarpeshkar, R. & O'Halloran, M. Scalable hybrid computation with spikes. Neural Comput. 14, 2003–2038 (2002).

    Article  PubMed  Google Scholar 

  115. Molin, S. et al. Suicidal genetic elements and their use in biological containment of bacteria. Annu. Rev. Microbiol. 47, 139–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Looger, L.L., Dwyer, M.A., Smith, J.J. & Hellinga, H.W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Win, M.N., Klein, J.S. & Smolke, C.D. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res. 34, 5670–5682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Skerker, J.M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu, J. & Lavan, D.A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666–670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jogler, C. & Schuler, D. Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol. 63, 501–521 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Booth, I.R., Edwards, M.D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of closure? Nat. Rev. Microbiol. 5, 431–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Falke, J.J., Bass, R.B., Butler, S.L., Chervitz, S.A. & Danielson, M.A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gao, Z., Tseng, C.H., Strober, B.E., Pei, Z. & Blaser, M.J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3, e2719 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R. & Gordon, J.I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  128. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Wei, M.Q., Mengesha, A., Good, D. & Anne, J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 259, 16–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. von Maltzahn, G. et al. Nanoparticle self-assembly gated by logical proteolytic triggers. J. Am. Chem. Soc. 129, 6064–6065 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Teule, F. et al. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Slotta, U. et al. Spider silk and amyloid fibrils: a structural comparison. Macromol. Biosci. 7, 183–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Widmaier, D.M. et al. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 309 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Choi, J.H. & Lee, S.Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Klein-Marcuschamer, D. & Stephanopoulos, G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc. Natl. Acad. Sci. USA 105, 2319–2324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Howard Hughes Medical Institute and the National Institutes of Health Director's Pioneer Award Program for their financial support. We also thank the reviewers for their insights and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy K Lu.

Ethics declarations

Competing interests

T.K.L. and J.J.C. have filed technology disclosures with their respective institutions for intellectual property protection covering several of the next-generation gene networks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T., Khalil, A. & Collins, J. Next-generation synthetic gene networks. Nat Biotechnol 27, 1139–1150 (2009). https://doi.org/10.1038/nbt.1591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1591

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing