Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome engineering

Abstract

For more than 50 years, those engineering genetic material have pursued increasingly challenging targets. During that time, the tools and resources available to the genetic engineer have grown to encompass new extremes of both scale and precision, opening up new opportunities in genome engineering. Today, our capacity to generate larger de novo assemblies of DNA is increasing at a rapid pace (with concomitant decreases in manufacturing cost). We are also witnessing potent demonstrations of the power of merging randomness and selection with engineering approaches targeting large numbers of specific sites within genomes. These developments promise genetic engineering with unprecedented levels of design originality and offer new avenues to expand both our understanding of the biological world and the diversity of applications for societal benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Milestones in the sizes of de novo synthesized DNA.
Figure 2: Efficiency trends in synthesis and sequencing over the past 30 years (base pairs per dollar).
Figure 3: Examples of engineering at the genome scale.
Figure 4: Current projects in genetic engineering exhibit a trade-off between the scale that can be manipulated and the scale at which one can effectively design.
Figure 5: Chemical synthesis of DNA.
Figure 6: Ligation.
Figure 7: DNA joining by polymerization.
Figure 8: DNA joining by recombination.
Figure 9: DNA assembly in series.
Figure 10: Hierarchical DNA assembly.
Figure 11: DNA assembly in parallel.
Figure 12: Pooling approaches.
Figure 13: Error control.
Figure 14: The general process of assembling large genetic constructs.

Similar content being viewed by others

References

  1. Khorana, H.G. Nucleic acid synthesis in the study of the genetic code. in Nobel Lectures: Physiology or Medicine (1963–1970) 341–369 (Elsevier Science, New York; 1972).

    Google Scholar 

  2. Nirenberg, M. The genetic code. in Nobel Lectures: Physiology or Medicine (1963–1970) 372–395 (Elsevier Science, New York; 1968).

    Google Scholar 

  3. Agarwal, K.L. et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227, 27–34 (1968).

    Article  Google Scholar 

  4. Ryan, M.J., Brown, E.L., Sekiya, T., Kupper, H. & Khorana, H.G. Total synthesis of a tyrosine suppressor tRNA gene. XVIII. Biological activity and transcription, in vitro, of the cloned gene. J. Biol. Chem. 254, 5817–5826 (1979).

    CAS  PubMed  Google Scholar 

  5. Moore, G.E.P. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  6. Michelson, A.M. & Todd, A.R. Nucleotides Part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′:5′-internucleotidic linkage. J. Chem. Soc. 2632–2638 (1955).

  7. Gibson, D. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203–214 (2003).

    Article  PubMed  Google Scholar 

  9. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kurzweil, R. The 21st century: a confluence of accelerating revolutions. Keynote address at 8th Annual Foresight Conference, Bethesda, Maryland, November 3, 2000. http://www.kurzweilai.net/meme/frame.html?main=/articles/art0184.html (2000).

    Google Scholar 

  11. Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Chan, L.Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).

  13. Hutchison, C.A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

  15. Lu, T.K., Khalil, A.S. & Collins, J.J. Nat. Biotechnol. 27, 1139–1150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawking, S.W. The Universe in a Nutshell (Bantam Books, New York, 2001).

    Google Scholar 

  17. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Glass, J.I. et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA 103, 425–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baker, D. et al. Engineering life: building a fab for biology. Sci. Am. 294, 44–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Rude, M.A. & Schirmer, A. New microbial fuels: a biotech perspective. Curr. Opin. Microbiol. 12, 274–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Rider, T.H. et al. A B cell-based sensor for rapid identification of pathogens. Science 301, 213–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cases, I. & de Lorenzo, V. Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int. Microbiol. 8, 213–222 (2005).

    CAS  PubMed  Google Scholar 

  26. Anderson, J.C., Clarke, E.J., Arkin, A.P. & Voigt, C.A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cheong, I. et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science 314, 1308–1311 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Ciglic, M. et al. Engineered human cells: say no to sepsis. IET Synth. Biol. 1, 13–16 (2007).

    Article  Google Scholar 

  29. Kelly, J.R. et al. Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 3, 4 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kosuri, S., Kelly, J.R. & Endy, D. TABASCO: A single molecule, base-pair resolved gene expression simulator. BMC Bioinformatics 8, 480 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. McDaniel, R. & Weiss, R. Advances in synthetic biology: on the path from prototypes to applications. Curr. Opin. Biotechnol. 16, 476–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Lucks, J.B., Qi, L., Whitaker, W.R. & Arkin, A.P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    Article  PubMed  Google Scholar 

  34. Heinemann, M. & Panke, S. Synthetic biology–putting engineering into biology. Bioinformatics 22, 2790–2799 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ellis, T., Wang, X. & Collins, J.J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knight, T. Idempotent vector design for standard assembly of Biobricks. Dspace@MIT http://hdl.handle.net/1721.1/21168 (2003).

  37. Biobrick Formats. http://bbf.openwetware.org/Standards/Technical/Formats.html.

  38. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santos, C.N. & Stephanopoulos, G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 12, 168–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Haseltine, E.L. & Arnold, F.H. Implications of rewiring bacterial quorum sensing. Appl. Environ. Microbiol. 74, 437–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Pfleger, B.F., Pitera, D.J., Newman, J.D., Martin, V.J. & Keasling, J.D. Microbial sensors for small molecules: development of a mevalonate biosensor. Metab. Eng. 9, 30–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Friedland, A.E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Link, K.H. & Breaker, R.R. Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. 16, 1189–1201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Computational Tools. http://openwetware.org/wiki/Computational_Tools.

  46. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Python Synthetic Biology libraries. http://bitbucket.org/chapmanb/synbio/.

  48. Czar, M.J., Cai, Y. & Peccoud, J. Writing DNA with GenoCAD. Nucleic Acids Res. 37, W40–47 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. CLOTHO. http://2008.igem.org/Team:UC_Berkeley_Tools (2008).

  51. Richmond, K.E. et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. 32, 5011–5018 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kong, D.S., Carr, P.A., Chen, L., Zhang, S. & Jacobson, J.M. Parallel gene synthesis in a microfluidic device. Nucleic Acids Res. 35, e61 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Carr, P.A. et al. Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. 32, e162 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bang, D. & Church, G.M. Gene synthesis by circular assembly amplification. Nat. Methods 5, 37–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Ben Yehezkel, T. et al. De novo DNA synthesis using single molecule PCR. Nucleic Acids Res. 36, e107 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. Tener, G.M., Gilham, P.T., Razzell, W.E., Turner, A.F. & Khorana, H.G. Studies on the chemical synthesis and enzymatic degradation of desoxyribo-oligonucleotides. Ann. NY Acad. Sci. 81, 757–775 (1959).

    Article  CAS  PubMed  Google Scholar 

  57. Hogrefe, R. A short history of oligonucleotide synthesis. http://www.trilinkbiotech.com/tech/oligo_history.pdf

  58. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Smith, H.O., Hutchison, C.A. III, Pfannkoch, C. & Venter, J.C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cello, J., Paul, A.V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Gibson, D.G. et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc. Natl. Acad. Sci. USA 105, 20404–20409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zahradka, K. et al. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Gemski, P. Jr., Wohlhieter, J.A. & Baron, L.S. Chromosome transfer between Escherichia coli HFR strains and Proteus mirabilis. Proc. Natl. Acad. Sci. USA 58, 1461–1467 (1967).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Larin, Z., Taylor, S.S. & Tyler-Smith, C. A method for linking yeast artificial chromosomes. Nucleic Acids Res. 24, 4192–4196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Itaya, M., Tsuge, K., Koizumi, M. & Fujita, K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc. Natl. Acad. Sci. USA 102, 15971–15976 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Donaldson, E.F. et al. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J. Virol. 82, 11948–11957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuroiwa, Y. et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat. Biotechnol. 18, 1086–1090 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Cox, J.C., Lape, J., Sayed, M.A. & Hellinga, H.W. Protein fabrication automation. Protein Sci. 16, 379–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Newcomb, J., Carlson, R. & Aldrich, S.C. Genome Synthesis and Design Futures: Implications for the US Economy (Bio Economic Research Associates, Cambridge, MA, USA, 2007).

    Google Scholar 

  71. http://en.wikipedia.org/wiki/Bootstrapping.

  72. Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science (2009).

  74. Tumpey, T.M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Mizoguchi, H., Sawano, Y., Kato, J. & Mori, H. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res. 15, 277–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Posfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Forster, A.C. & Church, G.M. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Forster, A.C. & Church, G.M. Synthetic biology projects in vitro. Genome Res. 17, 1–6 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Rackham, O. & Chin, J.W. A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Maerkl, S.J. & Quake, S.R. A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ivics, Z. et al. Transposon-mediated genome manipulation in vertebrates. Nat. Methods 6, 415–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Church, G.M. Safeguarding biology. Seed 20, 84–86 (2009).

    Google Scholar 

  83. Ciccarelli, R.B., Gunyuzlu, P., Huang, J., Scott, C. & Oakes, F.T. Construction of synthetic genes using PCR after automated DNA synthesis of their entire top and bottom strands. Nucleic Acids Res. 19, 6007–6013 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reese, C.B. The chemical synthesis of oligo- and poly-nucleotides: a personal commentary. Tetrahedron 58, 8893–8920 (2002).

    Article  CAS  Google Scholar 

  85. Sierzchala, A.B. et al. Solid-phase oligodeoxynucleotide synthesis: a two-step cycle using peroxy anion deprotection. J. Am. Chem. Soc. 125, 13427–13441 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Khorana, H.G. et al. Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 1. General introduction. J. Biol. Chem. 251, 565–570 (1976).

    CAS  PubMed  Google Scholar 

  87. Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Prodromou, C. & Pearl, L.H. Recursive PCR: a novel technique for total gene synthesis. Protein Eng. 5, 827–829 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Dillon, P.J. & Rosen, C.A. A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques 9, 298–300 (1990).

    CAS  PubMed  Google Scholar 

  90. Stewart, L. & Burgin, A.B. Whole gene synthesis: a Gene-O-Matic future. Front. Drug Des. Discov. 1, 297–341 (2005).

    Article  CAS  Google Scholar 

  91. Czar, M.J., Anderson, J.C., Bader, J.S. & Peccoud, J. Gene synthesis demystified. Trends Biotechnol. 27, 63–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Xiong, A.S. et al. Chemical gene synthesis: strategies, softwares, error corrections, and applications. FEMS Microbiol. Rev. 32, 522–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Link, A.J., Phillips, D. & Church, G.M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179, 6228–6237 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, X.T. et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res. 31, 6674–6687 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Van den Brulle, J. et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques 45, 340–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Gao, X., Yo, P., Keith, A., Ragan, T.J. & Harris, T.K. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. 31, e143 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Withers, S.T., Gottlieb, S.S., Lieu, B., Newman, J.D. & Keasling, J.D. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73, 6277–6283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mandecki, W., Hayden, M.A., Shallcross, M.A. & Stotland, E. A totally synthetic plasmid for general cloning, gene expression and mutagenesis in Escherichia coli. Gene 94, 103–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  100. Davis, C.A. & Benzer, S. Generation of cDNA expression libraries enriched for in-frame sequences. Proc. Natl. Acad. Sci. USA 94, 2128–2132 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoover, D.M. & Lubkowski, J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30, e43 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Drew, D. et al. A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Sci. 14, 2011–2017 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cabantous, S. & Waldo, G.S. In vivo and in vitro protein solubility assays using split GFP. Nat. Methods 3, 845–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Kodumal, S.J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. USA 101, 15573–15578 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim, C. et al. Progress in gene assembly from a MAS-driven DNA microarray. Microelectron. Eng. 83, 1613–1616 (2006).

    Article  CAS  Google Scholar 

  106. Fuhrmann, M., Oertel, W., Berthold, P. & Hegemann, P. Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res. 33, e58 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Marsic, D., Hughes, R.C., Byrne-Steele, M.L. & Ng, J.D. PCR-based gene synthesis to produce recombinant proteins for crystallization. BMC Biotechnol. 8, 44 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Binkowski, B.F., Richmond, K.E., Kaysen, J., Sussman, M.R. & Belshaw, P.J. Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Res. 33, e55 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Young, L. & Dong, Q. Two-step total gene synthesis method. Nucleic Acids Res. 32, e59 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, K. et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24, 680–686 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Hutchison, C.A. III, Smith, H.O., Pfannkoch, C. & Venter, J.C. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. USA 102, 17332–17336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou, X. et al. Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res. 32, 5409–5417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shimizu, Y., Kanamori, T. & Ueda, T. Protein synthesis by pure translation systems. Methods 36, 299–304 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge helpful discussions with J. Jacobson, A. Forster, B. Chow, members of the Church and Jacobson laboratories and the comments of anonymous reviewers. Grant support has been provided by Department of Energy-GTL, National Science Foundation (SynBERC, Center for Bits and Atoms, and Genes and Genomes Systems Cluster) and Defense Advanced Research Projects Agency programmable matter programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A Carr.

Ethics declarations

Competing interests

G.M.C. serves in an advisory role for several companies: Gen9, LS9, Joule Biotechnologies, Sigma-Aldrich. P.A.C. has no competing interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, P., Church, G. Genome engineering. Nat Biotechnol 27, 1151–1162 (2009). https://doi.org/10.1038/nbt.1590

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing