Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How to visually interpret biological data using networks

Networks in biology can appear complex and difficult to decipher. Merico et al. illustrate how to interpret biological networks with the help of frequently used visualization and analysis patterns.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Network visualization of chromosome maintenance and duplication machinery in baker's yeast, Saccharomyces cerevisiae.
Figure 2: Mathematical representation of networks and three alternate visualizations of the same data.

References

  1. Pujana, M.A. et al. Nat. Genet. 39, 1338–1349 (2007).

    Article  CAS  Google Scholar 

  2. Mummery-Widmer, J.L. et al. Nature 458, 987–992 (2009).

    Article  CAS  Google Scholar 

  3. Fraser, A.G. & Marcotte, E.M. Nat. Genet. 36, 559–564 (2004).

    Article  CAS  Google Scholar 

  4. Stark, C. et al. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  Google Scholar 

  5. Hu, Z. et al. Nucleic Acids Res. 35, W625–632 (2007).

    Article  Google Scholar 

  6. Cline, M.S. et al. Nat. Protoc. 2, 2366–2382 (2007).

    Article  CAS  Google Scholar 

  7. Ashburner, M. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  8. Spellman, P.T. et al. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  9. Gunsalus, K.C. et al. Nature 436, 861–865 (2005).

    Article  CAS  Google Scholar 

  10. Hu, Z. et al. Nat. Biotechnol. 25, 547–554 (2007).

    Article  CAS  Google Scholar 

  11. Fukuda, K. & Takagi, T. Bioinformatics 17, 829–837 (2001).

    Article  CAS  Google Scholar 

  12. Le Novère, N. et al. Nat. Biotechnol. 27, 735–741 (2009).

    Article  Google Scholar 

  13. Strogatz, S.H. Nature 410, 268–276 (2001).

    Article  CAS  Google Scholar 

  14. Collins, S.R. et al. Nature 446, 806–810 (2007).

    Article  CAS  Google Scholar 

  15. Reguly, T. et al. J. Biol. 5, 11 (2006).

    Article  Google Scholar 

  16. Davidson, E.H. et al. Science 295, 1669–1678 (2002).

    Article  CAS  Google Scholar 

  17. Boone, C., Bussey, H. & Andrews, B.J. Nat. Rev. Genet. 8, 437–449 (2007).

    Article  CAS  Google Scholar 

  18. Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. Science 302, 249–255 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.G. is financially supported by the Swiss National Science Foundation (Grant PBELA—120936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D Bader.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merico, D., Gfeller, D. & Bader, G. How to visually interpret biological data using networks. Nat Biotechnol 27, 921–924 (2009). https://doi.org/10.1038/nbt.1567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing