Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic protein scaffolds provide modular control over metabolic flux

Abstract

Engineered metabolic pathways constructed from enzymes heterologous to the production host often suffer from flux imbalances, as they typically lack the regulatory mechanisms characteristic of natural metabolism. In an attempt to increase the effective concentration of each component of a pathway of interest, we built synthetic protein scaffolds that spatially recruit metabolic enzymes in a designable manner. Scaffolds bearing interaction domains from metazoan signaling proteins specifically accrue pathway enzymes tagged with their cognate peptide ligands. The natural modularity of these domains enabled us to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex and thereby achieve 77-fold improvement in product titer with low enzyme expression and reduced metabolic load. One of the same scaffolds was used to triple the yield of glucaric acid, despite high titers (0.5 g/l) without the synthetic complex. These strategies should prove generalizeable to other metabolic pathways and programmable for fine-tuning pathway flux.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Employing metazoan machinery for modular control over pathway flux.
Figure 2: Heterologous protein-protein interaction domain/ligands provide direct control over enzyme stoichiometry of a synthetic complex.
Figure 3: Synthetic scaffolds built from modular protein-protein interaction domains provide modular control over metabolic pathway flux.
Figure 4: Enhancement of mevalonate production is scaffold-dependent.
Figure 5: Improved efficiency from pathway scaffolding allows higher titers to be achieved with faster growth of the production host.
Figure 6: Improvement of glucaric acid titers by scaffolding the bottleneck step enzymes Ino1 and MIOX.

Similar content being viewed by others

References

  1. Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

    Article  CAS  Google Scholar 

  2. Nakamura, C.E. & Whited, G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

    Article  CAS  Google Scholar 

  3. Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

    Article  CAS  Google Scholar 

  4. Harcum, S.W. & Bentley, W.E. Heat-shock and stringent responses have overlapping protease activity in Escherichia coli. Implications for heterologous protein yield. Appl. Biochem. Biotechnol. 80, 23–37 (1999).

    Article  CAS  Google Scholar 

  5. Kizer, L., Pitera, D.J., Pfleger, B. & Keasling, J.D. Functional genomics for pathway optimization: application to isoprenoid production. Appl. Environ. Microbiol 74, 3229–3241 (2008).

    Article  CAS  Google Scholar 

  6. Zhu, M.M., Lawman, P.D. & Cameron, D.C. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol. Prog. 18, 694–699 (2002).

    Article  CAS  Google Scholar 

  7. Barbirato, F., Grivet, J.P., Soucaille, P. & Bories, A. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environ. Microbiol. 62, 1448–1451 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11 (1999).

    Article  CAS  Google Scholar 

  9. Pitera, D.J., Paddon, C.J., Newman, J.D. & Keasling, J.D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in. Escherichia coli. Metab. Eng. 9, 193–207 (2007).

    CAS  PubMed  Google Scholar 

  10. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  Google Scholar 

  11. Bloom, J.D. et al. Evolving strategies for enzyme engineering. Curr. Opin. Struct. Biol. 15, 447–452 (2005).

    Article  CAS  Google Scholar 

  12. Miles, E.W., Rhee, S. & Davies, D.R. The molecular basis of substrate channeling. J. Biol. Chem. 274, 12193–12196 (1999).

    Article  CAS  Google Scholar 

  13. Spivey, H.O. & Ovadi, J. Substrate channeling. Methods 19, 306–321 (1999).

    Article  CAS  Google Scholar 

  14. Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W. & Davies, D.R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17857–17871 (1988).

    CAS  Google Scholar 

  15. Thoden, J.B., Holden, H.M., Wesenberg, G., Raushel, F.M. & Rayment, I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry 36, 6305–6316 (1997).

    Article  CAS  Google Scholar 

  16. Conrado, R.J., Varner, J.D. & DeLisa, M.P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    Article  CAS  Google Scholar 

  17. Mosbach, K. & Mattiasson, B. Matrix-bound enzymes. II. Studies on a matrix-bound two-enzyme-system. Acta Chem. Scand. 24, 2093–2100 (1970).

    Article  CAS  Google Scholar 

  18. Bulow, L. Characterization of an artificial bifunctional enzyme, beta-galactosidase/galactokinase, prepared by gene fusion. Eur. J. Biochem. 163, 443–448 (1987).

    Article  CAS  Google Scholar 

  19. Bulow, L., Ljungcrantz, P. & Mosbach, K. Preparation of a soluble biofunctional enzyme by gene fusion. Bio/Technology 3, 821–823 (1985).

    Google Scholar 

  20. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  Google Scholar 

  21. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  Google Scholar 

  22. Prehoda, K.E., Scott, J.A., Mullins, R.D. & Lim, W.A. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806 (2000).

    Article  CAS  Google Scholar 

  23. Dueber, J.E., Yeh, B.J., Bhattacharyya, R.P. & Lim, W.A. Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr. Opin. Struct. Biol. 14, 690–699 (2004).

    Article  CAS  Google Scholar 

  24. Dueber, J.E., Yeh, B.J., Chak, K. & Lim, W.A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

    Article  CAS  Google Scholar 

  25. Dueber, J.E., Mirsky, E.A. & Lim, W.A. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

    Article  CAS  Google Scholar 

  26. Levchenko, A., Bruck, J. & Sternberg, P.W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97, 5818–5823 (2000).

    Article  CAS  Google Scholar 

  27. Werpy, T. & Petersen, G. Top value added chemicals from biomass. vol. I: Results of screening for potential candidates from sugars and synthesis gas (US Dept. of Energy, Oak Ridge, Tennessee and Dept. of Commerce, Springfield, Virginia; 2004). 〈http://www.pnl.gov/main/publications/external/technical_reports/PNNL-14808.pdf〉.

  28. Moon, T.S., Yoon, S.H., Lanza, A.M., Roy-Mayhew, J.D. & Prather, K.L. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl. Environ. Microbiol. 75, 589–595 (2009).

    Article  CAS  Google Scholar 

  29. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  Google Scholar 

  30. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  31. Bashor, C.J., Helman, N.C., Yan, S. & Lim, W.A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

    Article  CAS  Google Scholar 

  32. Howard, P.L., Chia, M.C., Del Rizzo, S., Liu, F.F. & Pawson, T. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc. Natl. Acad. Sci. USA 100, 11267–11272 (2003).

    Article  CAS  Google Scholar 

  33. Yeh, B.J., Rutigliano, R.J., Deb, A., Bar-Sagi, D. & Lim, W.A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

    Article  CAS  Google Scholar 

  34. Lee, S.K., Newman, J.D. & Keasling, J.D. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: evidence for involvement of the cyclic AMP receptor protein. J. Bacteriol. 187, 2793–2800 (2005).

    Article  CAS  Google Scholar 

  35. Shetty, R.P., Endy, D. & Knight, T.F. Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    Article  Google Scholar 

  36. Hillier, B.J., Christopherson, K.S., Prehoda, K.E., Bredt, D.S. & Lim, W.A. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284, 812–815 (1999).

    Article  CAS  Google Scholar 

  37. Khlebnikov, A., Datsenko, K.A., Skaug, T., Wanner, B.L. & Keasling, J.D. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).

    Article  CAS  Google Scholar 

  38. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protocols 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Arkin, J. Dietrich, E. Dueber, L. Katz, and W. Whitaker for comments and discussion during the preparation of the manuscript. We also thank members of the Dueber and Keasling labs for experimental help and discussions. This work was supported by funding from UC Berkeley QB3 Institute (J.E.D.), National Science Foundation (NSF) Synthetic Biology Engineering Research Center grant no. EEC-0540879 (J.E.D., J.D.K, K.L.J.P., T.S.M.), NSF grant no. CBET-0756801 (J.E.D.), the Bill and Melinda Gates Foundation (J.D.K), Joint BioEnergy Institute (J.D.K.), the Office of Naval Research Young Investigator Program grant no. N000140510656 (K.L.J.P. and T.S.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.E.D. conceived the project, designed all experiments and wrote the manuscript. J.E.D. and G.C.W. co-performed the experiments, and G.C.W. edited the manuscript. G.R.M. constructed and performed preliminary experiments used as a foundation for experiments included in this paper. T.S.M. contributed an experimental role for glucaric acid pathway experiments and edited the manuscript. C.J.P. contributed an experimental role for mass spectrometry experiments. A.V.U. contributed a supportive role in performing experiments for Supplementary Information Materials. K.L.J.P. contributed in development of the glucaric acid pathway and edited the manuscript. J.D.K. contributed general advice, especially with the mevalonate biosynthesis pathway, resource support and critical advice for manuscript preparation.

Corresponding author

Correspondence to John E Dueber.

Ethics declarations

Competing interests

Jay Keasling has a financial interest in Amyris and LS9.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–8 (PDF 861 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dueber, J., Wu, G., Malmirchegini, G. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27, 753–759 (2009). https://doi.org/10.1038/nbt.1557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing