Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Species-independent translational leaders facilitate cell-free expression

Abstract

Cell-free protein synthesis enables the rapid production and engineering of recombinant proteins. Existing cell-free systems differ substantially from each other with respect to efficiency, scalability and the ability to produce functional eukaryotic proteins. Here we describe species-independent translational sequences (SITS) that mediate efficient cell-free protein synthesis in multiple prokaryotic and eukaryotic systems, presumably through bypassing the early translation initiation factors. We use these leaders in combination with targeted suppression of the endogenous Leishmania tarentolae mRNAs to create a cell-free system based on this protozoan. The system can be directly programmed with unpurified PCR products, enabling rapid generation of large protein libraries and protein variants. L. tarentolae extract can produce up to 300 μg/ml of recombinant protein in 2 h. We further demonstrate that protein-protein and protein–small molecule interactions can be quantitatively analyzed directly in the translation mixtures using fluorescent (cross-) correlation spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of unstructured species-independent translational sequences (SITS) and analysis of their ability to initiate translation in cell-free expression systems.
Figure 2: Preparation of cell-free translational lysate based on L. tarentolae.
Figure 3: Development of coupled LTE system.
Figure 4: Fluorescence correlation (FCS) and cross-correlation (FCCS) analysis of fluorescent proteins synthesized using the LTE system.

Similar content being viewed by others

References

  1. Nirenberg, M.W. & Matthaei, J.H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 47, 1588–1602 (1961).

    Article  CAS  Google Scholar 

  2. Katzen, F., Chang, G. & Kudlicki, W. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 23, 150–156 (2005).

    Article  CAS  Google Scholar 

  3. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  Google Scholar 

  4. Sawasaki, T., Morishita, R., Gouda, M.D. & Endo, Y. Methods for high-throughput materialization of genetic information based on wheat germ cell-free expression system. Methods Mol. Biol. 375, 95–106 (2007).

    CAS  PubMed  Google Scholar 

  5. McCallum, C.D., Do, H., Johnson, A.E. & Frydman, J. The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribosome-bound nascent chains examined using photo-cross-linking. J. Cell Biol. 149, 591–602 (2000).

    Article  CAS  Google Scholar 

  6. Ezure, T. et al. Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol. Prog. 22, 1570–1577 (2006).

    Article  CAS  Google Scholar 

  7. He, M. & Wang, M.W. Arraying proteins by cell-free synthesis. Biomol. Eng. 24, 375–380 (2007).

    Article  CAS  Google Scholar 

  8. Pestova, T.V. et al. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 7029–7036 (2001).

    Article  CAS  Google Scholar 

  9. Merrick, W.C. Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11 (2004).

    Article  CAS  Google Scholar 

  10. Lomakin, I.B., Hellen, C.U. & Pestova, T.V. Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol. Cell. Biol. 20, 6019–6029 (2000).

    Article  CAS  Google Scholar 

  11. Shaloiko, L.A. et al. Effective non-viral leader for cap-independent translation in a eukaryotic cell-free system. Biotechnol. Bioeng. 88, 730–739 (2004).

    Article  CAS  Google Scholar 

  12. Pelham, H.R. & Jackson, R.J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  13. Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem. 280, 1872–1881 (2005).

    Article  CAS  Google Scholar 

  14. Kozak, M. The scanning model for translation: an update. J. Cell Biol. 108, 229–241 (1989).

    Article  CAS  Google Scholar 

  15. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  16. Pestova, T.V. & Kolupaeva, V.G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).

    Article  CAS  Google Scholar 

  17. Ahn, B.Y. & Moss, B. Capped poly(A) leaders of variable lengths at the 5′ ends of vaccinia virus late mRNAs. J. Virol. 63, 226–232 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bablanian, R., Goswami, S.K., Esteban, M., Banerjee, A.K. & Merrick, W.C. Mechanism of selective translation of vaccinia virus mRNAs: differential role of poly(A) and initiation factors in the translation of viral and cellular mRNAs. J. Virol. 65, 4449–4460 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamura, N., Sawasaki, T., Kasahara, Y., Takai, K. & Endo, Y. Selection of 5′-untranslated sequences that enhance initiation of translation in a cell-free protein synthesis system from wheat embryos. Bioorg. Med. Chem. Lett. 15, 5402–5406 (2005).

    Article  CAS  Google Scholar 

  20. Berestovskaya, N.G. et al. Cotranslational formation of active photoprotein obelin in a cell-free translation system: direct ultrahigh sensitive measure of the translation course. Anal. Biochem. 268, 72–78 (1999).

    Article  CAS  Google Scholar 

  21. Clayton, C. & Shapira, M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol. Biochem. Parasitol. 156, 93–101 (2007).

    Article  CAS  Google Scholar 

  22. Breitling, R. et al. Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr. Purif. 25, 209–218 (2002).

    Article  CAS  Google Scholar 

  23. Niculae, A. et al. Isotopic labeling of recombinant proteins expressed in the protozoan host Leishmania tarentolae. Protein Expr. Purif. 48, 167–172 (2006).

    Article  CAS  Google Scholar 

  24. Fritsche, C., Sitz, M., Wolf, M. & Pohl, H.D. Development of a defined medium for heterologous expression in Leishmania tarentolae. J. Basic Microbiol. 48, 488–495 (2008).

    Article  CAS  Google Scholar 

  25. Leung, K.F., Baron, R. & Seabra, M.C. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J. Lipid Res. 47, 467–475 (2006).

    Article  CAS  Google Scholar 

  26. Rak, A. et al. Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell 117, 749–760 (2004).

    Article  CAS  Google Scholar 

  27. Nguyen, U.T. et al. Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization. ChemBioChem 8, 408–423 (2007).

    Article  CAS  Google Scholar 

  28. Bacia, K. & Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856 (2007).

    Article  CAS  Google Scholar 

  29. Oyama, R. et al. Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res. 34, e102 (2006).

    Article  Google Scholar 

  30. Banaszynski, L.A., Liu, C.W. & Wandless, T.J. Characterization of the FKBP.rapamycin.FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    Article  CAS  Google Scholar 

  31. Warrens, A.N., Jones, M.D. & Lechler, R.I. Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186, 29–35 (1997).

    Article  CAS  Google Scholar 

  32. Yakhnin, A.V., Vinokurov, L.M., Surin, A.K. & Alakhov, Y.B. Green fluorescent protein purification by organic extraction. Protein Expr. Purif. 14, 382–386 (1998).

    Article  CAS  Google Scholar 

  33. Berrow, N.S. et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 (2007).

    Article  Google Scholar 

  34. Keese, M. et al. Quantitative imaging of apoptosis commitment in colorectal tumor cells. Differentiation 75, 809–818 (2007).

    Article  CAS  Google Scholar 

  35. Rudolf, R. & Ulo, M. Diffusion of single molecules through a Gaussian laser beam in Proc. SPIE, 1921 (ed. Jouko, E.K.-T.) 239–248 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Deutsche Forschungsgemeinschaft grant AL 484/5-4 and Heisenberg fellowship to K.A. U.T.T.N was supported by the predoctoral fellowship of Fonds der chemischen Industrie. We thank P. Lommerse for help with FCCS measurements and to V. Rajagopalan, M. Terbeck and A. Sander for excellent technical assistance. We are grateful to M. Gruen, R. Breitling, F. Seebeck and A. Goodall for critical reading of the manuscript and stimulating discussions and K. Browning (University of Texas at Austin) for a gift of reagents. We are very grateful to C. Clayton, S. Beverley, L. Shaloiko, I. Granowsky and P. Dittrich for support in the early stages of the project. We are indebted to R.S. Goody for long-term support.

Author information

Authors and Affiliations

Authors

Contributions

S.M. designed and performed research, O.K. designed and performed research, U.T.T.N designed and performed research and K.A. designed research and wrote the manuscript.

Corresponding author

Correspondence to Kirill Alexandrov.

Ethics declarations

Competing interests

Kirill Alexandrov is a stakeholder in Jena Bioscience, which markets Leishmania tarentolae-based in vivo protein expression systems.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Methods (PDF 1655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mureev, S., Kovtun, O., Nguyen, U. et al. Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 27, 747–752 (2009). https://doi.org/10.1038/nbt.1556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing