Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilized gene duplication enables long-term selection-free heterologous pathway expression

Abstract

Engineering robust microbes for the biotech industry typically requires high-level, genetically stable expression of heterologous genes and pathways. Although plasmids have been used for this task, fundamental issues concerning their genetic stability have not been adequately addressed. Here we describe chemically inducible chromosomal evolution (CIChE), a plasmid-free, high gene copy expression system for engineering Escherichia coli. CIChE uses E. coli recA homologous recombination to evolve a chromosome with 40 consecutive copies of a recombinant pathway. Pathway copy number is stabilized by recA knockout, and the resulting engineered strain requires no selection markers and is unaffected by plasmid instabilities. Comparison of CIChE-engineered strains with equivalent plasmids revealed that CIChE improved genetic stability approximately tenfold and growth phase–specific productivity approximately fourfold for a strain producing the high metabolic burden–biopolymer poly-3-hydroxybutyrate. We also increased the yield of the nutraceutical lycopene by 60%. CIChE should be applicable in many organisms, as it only requires having targeted genomic integration methods and a recA homolog.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemically induced chromosomal evolution (CIChE) evolves the chromosome of a microorganism to produce many copies of a recombinant allele.
Figure 2: Allele segregation indicates that random distribution, not mutation rates, result in rapid productivity loss in plasmids.
Figure 3: In the absence of antibiotics, gene copy number in CIChE recA cells is more stable than in plasmid-bearing or CIChE recA+ cells.
Figure 4: Gene copy number and yield in CIChE strains meet or exceed plasmid counterparts.
Figure 5: CIChE improves genetic stability.

Similar content being viewed by others

References

  1. Gibson, D.G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  Google Scholar 

  2. Kodumal, S.J. et al. Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. USA 101, 15573–15578 (2004).

    Article  CAS  Google Scholar 

  3. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  Google Scholar 

  4. Win, M.N. & Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 104, 14283–14288 (2007).

    Article  CAS  Google Scholar 

  5. Friehs, K. Plasmid copy number and plasmid stability. in New Trends and Developments in Biochemical Engineering vol. 86 (ed. Scheper, T.H.) 47–82, (Springer Berlin, Heidelberg, Germany, 2004).

    Chapter  Google Scholar 

  6. Keasling, J.D. Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol. 17, 452–460 (1999).

    Article  CAS  Google Scholar 

  7. Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).

    Article  CAS  Google Scholar 

  8. Bentley, W.E. & Quiroga, O.E. Investigation of subpopulation heterogeneity and plasmid stability in recombinant Escherichia coli via a simple segregated model. Biotechnol. Bioeng. 42, 222–234 (1993).

    Article  CAS  Google Scholar 

  9. Ishii, K., Hashimoto-Gotoh, T. & Matsubara, K. Random replication and random assortment model for plasmid incompatibility in bacteria. Plasmid 1, 435–445 (1978).

    Article  CAS  Google Scholar 

  10. Novick, R.P. Plasmid incompatibility. Microbiol. Rev. 51, 381–395 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Novick, R.P. & Hoppensteadt, F.C. On plasmid incompatibility. Plasmid 1, 421–434 (1978).

    Article  CAS  Google Scholar 

  12. Snell, K.D., Draths, K.M. & Frost, J.W. Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J. Am. Chem. Soc. 118, 5605–5614 (1996).

    Article  CAS  Google Scholar 

  13. Wang, Y. & Pfeifer, B.A. 6-deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab. Eng. 10, 33–38 (2008).

    Article  Google Scholar 

  14. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  Google Scholar 

  15. Zhang, J. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298 (2003).

    Article  Google Scholar 

  16. Olson, P. et al. High-level expression of eukaryotic polypeptides from bacterial chromosomes. Protein Expr. Purif. 14, 160–166 (1998).

    Article  CAS  Google Scholar 

  17. Wang, X., Wang, Z. & Da Silva, N.A. G418 Selection and stability of cloned genes integrated at chromosomal delta sequences of Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 45–51 (1996).

    Article  CAS  Google Scholar 

  18. Borth, N., Zeyda, M., Kunert, R. & Katinger, H. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol. Bioeng. 71, 266–273 (2000).

    Article  CAS  Google Scholar 

  19. Kim, N.S., Kim, S.J. & Lee, G.M. Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 60, 679–688 (1998).

    Article  CAS  Google Scholar 

  20. Nakanishi, F. et al. Evaluation of stability in the DHFR gene amplification system using fluorescence in situ hybridization. in Animal Cell Technology: Basic & Applied Aspects vol. 10 (eds. Kitagawa, Y., Matsuda, T. & Iijima, S.) 25–263 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999).

    Google Scholar 

  21. Boyd, D., Weiss, D.S., Chen, J.C. & Beckwith, J. Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J. Bacteriol. 182, 842–847 (2000).

    Article  CAS  Google Scholar 

  22. Hong, S.H., Park, S.J., Moon, S.Y., Park, J.P. & Lee, S.Y. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 83, 854–863 (2003).

    Article  CAS  Google Scholar 

  23. Madison, L.L. & Huisman, G.W. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 21–53 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Klein-Marcuschamer, D., Ajikumar, P.K. & Stephanopoulos, G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol. 25, 417–424 (2007).

    Article  CAS  Google Scholar 

  25. Hiszczynska-Sawicka, E. & Kur, J. Effect of Escherichia coli IHF mutations on plasmid p15A copy number. Plasmid 38, 174–179 (1997).

    Article  CAS  Google Scholar 

  26. Ivanov, I.G. & Bachvarov, D.R. Determination of plasmid copy number by the boiling method. Anal. Biochem. 165, 137–141 (1987).

    Article  CAS  Google Scholar 

  27. Alper, H., Jin, Y.-S., Moxley, J.F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155–164 (2005).

    Article  CAS  Google Scholar 

  28. Alper, H., Miyaoku, K. & Stephanopoulos, G. Construction of lycopene-overproducing Escherichia coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23, 612–616 (2005).

    Article  CAS  Google Scholar 

  29. Farmer, W.R. & Liao, J.C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18, 533–537 (2000).

    Article  CAS  Google Scholar 

  30. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  31. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. Q. Rev. Biophys. 34, 1–59 (2001).

    Article  CAS  Google Scholar 

  32. Lee, S.Y., Lee, K.M., Chan, H.N. & Steinbüchel, A. Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnol. Bioeng. 44, 1337–1347 (1994).

    Article  CAS  Google Scholar 

  33. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  Google Scholar 

  34. Pronk, J.T. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 68, 2095–2100 (2002).

    Article  CAS  Google Scholar 

  35. Lawrence, A.G., Choi, J., Rha, C., Stubbe, J. & Sinskey, A.J. In vitro analysis of the chain termination reaction in the synthesis of poly-(r)-beta-hydroxybutyrate by the class III synthase from Allochromatium vinosum. Biomacromolecules 6, 2113–2119 (2005).

    Article  CAS  Google Scholar 

  36. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  37. Cunningham, F.X. Jr., Sun, Z., Chamovitz, D., Hirschberg, J. & Gantt, E. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6, 1107–1121 (1994).

    Article  CAS  Google Scholar 

  38. Wang, F. & Lee, S.Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 63, 4765–4769 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pont-Kingdon, G. Creation of chimeric junctions, deletions, and insertions by PCR. in Methods in Molecular Biology: PCR Protocols. vol. 226, edn. 2 (eds. Bartlett, J.M.S. & Strirling, D.) 511–515 (Humana Press Inc., Totowa, NJ, 2003).

    Google Scholar 

  40. Tyo, K.E., Zhou, H. & Stephanopoulos, G.N. High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 72, 3412–3417 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge National Science Foundation grant CBET-0730238 and the Singapore-MIT Alliance for funding. We thank H. Alper for cloning advice and J. Young for model calculations advice. Lysogens and transfer strains were kindly provided by D. Boyd and J. Beckwith (Harvard Medical School). BW26,547 was received from B. Sauer (Massachusetts Institute of Technology (MIT)). pAGL20 is a gift from A. Sinskey (MIT).

Author information

Authors and Affiliations

Authors

Contributions

K.E.J.T. designed the study, performed modeling, strain engineering and PHB evaluation. P.K.A. evaluated lycopene strains. G.S. supervised all work. K.E.J.T., P.K.A. and G.S. analyzed data and wrote paper.

Corresponding author

Correspondence to Gregory Stephanopoulos.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Equations (PDF 661 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyo, K., Ajikumar, P. & Stephanopoulos, G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27, 760–765 (2009). https://doi.org/10.1038/nbt.1555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing