Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo

Abstract

Two humanized IgG4 antibodies, natalizumab and gemtuzumab, are approved for human use, and several others, like TGN1412, are or have been in clinical development. Although IgG4 antibodies can dynamically exchange half-molecules1, Fab-arm exchange with therapeutic antibodies has not been demonstrated in humans. Here, we show that natalizumab exchanges Fab arms with endogenous human IgG4 in natalizumab-treated individuals. Gemtuzumab, in contrast, contains an IgG4 core-hinge mutation that blocks Fab-arm exchange to undetectable levels both in vitro and in a mouse model. The ability of IgG4 therapeutics to recombine with endogenous IgG4 may affect their pharmacokinetics and pharmacodynamics. Although pharmacokinetic modeling lessens concerns about undesired cross-linking under normal conditions, unpredictability remains and mutations that completely prevent Fab-arm exchange in vivo should be considered when designing therapeutic IgG4 antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core-hinge stabilization protects IgG4 antibody therapeutics from Fab-arm exchange in vitro.
Figure 2: Core-hinge stabilization protects IgG4 antibody therapeutics from Fab-arm exchange in vivo.
Figure 3: Pharmacokinetic model of IgG4 species in patients.

Similar content being viewed by others

References

  1. van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Labrijn, A.F., Aalberse, R.C. & Schuurman, J. When binding is enough: nonactivating antibody formats. Curr. Opin. Immunol. 20, 479–485 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Reddy, M.P. et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J. Immunol. 164, 1925–1933 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Newman, R. et al. Modification of the Fc region of a primatized IgG antibody to human CD4 retains its ability to modulate CD4 receptors but does not deplete CD4(+) T cells in chimpanzees. Clin. Immunol. 98, 164–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Angal, S. et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol. Immunol. 30, 105–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Bloom, J.W., Madanat, M.S., Marriott, D., Wong, T. & Chan, S.Y. Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci. 6, 407–415 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuurman, J., Perdok, G.J., Gorter, A.D. & Aalberse, R.C. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol. Immunol. 38, 1–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Yednock, T.A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356, 63–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Sievers, E.L. et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93, 3678–3684 (1999).

    CAS  PubMed  Google Scholar 

  10. Polman, C.H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bross, P.F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  PubMed  Google Scholar 

  12. Salfeld, J.G. Isotype selection in antibody engineering. Nat. Biotechnol. 25, 1369–1372 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Hanke, T. Use of an active substance binding to CD28 for producing a pharmaceutical composition for the treatment of B-CLL. US patent application 20070122410 (2007).

  14. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bleeker, W.K. et al. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J. Immunol. 173, 4699–4707 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Teeling, J.L. et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104, 1793–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Aucouturier, P. & Preud'Homme, J.L. Subclass distribution of human myeloma proteins as determined with monoclonal antibodies. Immunol. Lett. 16, 55–57 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Gordon, F.H. et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn's disease. Gastroenterology 121, 268–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sheremata, W.A., Vollmer, T.L., Stone, L.A., Willmer-Hulme, A.J. & Koller, M. A safety and pharmacokinetic study of intravenous natalizumab in patients with MS. Neurology 52, 1072–1074 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Burton, D.R. & Wilson, I.A. Immunology. Square-dancing antibodies. Science 317, 1507–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Langer-Gould, A., Atlas, S.W., Green, A.J., Bollen, A.W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kleinschmidt-DeMasters, B.K. & Tyler, K.L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Major, E.O. Human polyomavirus, in Fields Virology, edn. 4 (eds. Knipe, D.M. & Griffin, D.E.) 2175–2196 (Lippincott, Williams and Wilkins, Philadelphia, 2001).

    Google Scholar 

  25. Calabrese, L.H. & Molloy, E.S. Progressive multifocal leucoencephalopathy in the rheumatic diseases: assessing the risks of biological immunosuppressive therapies. Ann. Rheum. Dis. 67 Suppl 3, iii64–iii65 (2008).

    Article  PubMed  Google Scholar 

  26. Sterry, W. et al. Immunosuppressive therapy in dermatology and PML. J. Dtsch. Dermatol. Ges. 7, 5 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. de Witte, L. et al. Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc. Natl. Acad. Sci. USA 104, 19464–19469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy, S.L. et al. Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J. Med. Virol. 81, 65–74 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stebbings, R. et al. “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J. Immunol. 179, 3325–3331 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Wiegman, J. van den Brakel, T. Verhagen, M. Geukes and B. Fox for expert technical assistance, T. Vink and G. Perdok for advice and members of the SPARREN team for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.F.L. was responsible for experimental design, data analysis, and wrote the manuscript, A.O.B. performed the main experiments, E.T.J.v.d.B. and A.Y.W.V. performed and interpreted MS experiments, W.K.B. performed pharmacokinetic modeling, S.J.T. was responsible for experiments with TGN1412, J.K. and C.H.P. treated patients, collected samples and interpreted data, R.C.A. and J.G.J.v.d.W., provided ideas and reviewed the manuscript, J.S. was responsible for supervision, planning and discussions, P.W.H.I.P. supervised all aspects of this work and wrote the manuscript.

Corresponding author

Correspondence to Paul W H I Parren.

Ethics declarations

Competing interests

A.F.L., A.O.B., E.T.J.v.d.B., A.Y.W.V., W.K.B., J.G.J.v.d.W., J.S. and P.W.H.I.P. have a financial interest in Genmab, a company that develops therapeutic human antibodies; they are Genmab employees and have stock and/or warrants. R.C.A. received consulting fees from Genmab. J.K. and C.H.P. have conducted clinical trials with Tysabri and have received consulting fees from Biogen Idec/Elan Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2 (PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labrijn, A., Buijsse, A., van den Bremer, E. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 27, 767–771 (2009). https://doi.org/10.1038/nbt.1553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing