Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma

Abstract

We describe a system that permits conditional mobilization of a Sleeping Beauty (SB) transposase allele by Cre recombinase to induce cancer specifically in a tissue of interest. To demonstrate its potential for developing tissue-specific models of cancer in mice, we limit SB transposition to the liver by placing Cre expression under the control of an albumin enhancer/promoter sequence and screen for hepatocellular carcinoma (HCC)–associated genes. From 8,060 nonredundant insertions cloned from 68 tumor nodules and comparative analysis with data from human HCC samples, we identify 19 loci strongly implicated in causing HCC. These encode genes, such as EGFR and MET, previously associated with HCC and others, such as UBE2H, that are potential new targets for treating this neoplasm. Our system, which could be modified to drive transposon-based insertional mutagenesis wherever tissue-specific Cre expression is possible, promises to enhance understanding of cancer genomes and identify new targets for therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accelerated tumorigenesis in p53-deficient livers compared with nonpredisposed livers of male mice.
Figure 2: Immunohistochemical analyses of liver adenomas.
Figure 3: Frequent mutagenic transposon insertions into epidermal growth factor receptor (Egfr) and EGFR interacting genes associated with HCC.
Figure 4: SB-induced tumorigenesis reveals clonal relationships between primary and metastatic derivatives.
Figure 5: The Fah-deficient mouse model validates the oncogenic potential of truncated EGFR.

Similar content being viewed by others

References

  1. Spradling, A.C. et al. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. USA 92, 10824–10830 (1995).

    Article  CAS  Google Scholar 

  2. Bellen, H.J. et al. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300 (1989).

    Article  CAS  Google Scholar 

  3. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  Google Scholar 

  4. Dupuy, A.J., Fritz, S. & Largaespada, D.A. Transposition and gene disruption in the male germline of the mouse. Genesis 30, 82–88 (2001).

    Article  CAS  Google Scholar 

  5. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. USA 98, 9191–9196 (2001).

    Article  CAS  Google Scholar 

  6. Keng, V.W. et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat. Methods 2, 763–769 (2005).

    Article  CAS  Google Scholar 

  7. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  Google Scholar 

  8. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  Google Scholar 

  9. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  Google Scholar 

  10. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  Google Scholar 

  11. Llovet, J.M., Burroughs, A. & Bruix, J. Hepatocellular carcinoma. Lancet 362, 1907–1917 (2003).

    Article  Google Scholar 

  12. Naugler, W.E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  Google Scholar 

  13. Bressac, B., Kew, M., Wands, J. & Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429–431 (1991).

    Article  CAS  Google Scholar 

  14. Buendia, M.A. Genetics of hepatocellular carcinoma. Semin. Cancer Biol. 10, 185–200 (2000).

    Article  CAS  Google Scholar 

  15. Llovet, J.M. & Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48, 1312–1327 (2008).

    Article  CAS  Google Scholar 

  16. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  Google Scholar 

  17. de Vries, A. et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl. Acad. Sci. USA 99, 2948–2953 (2002).

    Article  CAS  Google Scholar 

  18. Rohde, F. et al. Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer. Int. J. Cancer 121, 1717–1723 (2007).

    Article  CAS  Google Scholar 

  19. Calvisi, D.F., Factor, V.M., Loi, R. & Thorgeirsson, S.S. Activation of beta-catenin during hepatocarcinogenesis in transgenic mouse models: relationship to phenotype and tumor grade. Cancer Res. 61, 2085–2091 (2001).

    CAS  PubMed  Google Scholar 

  20. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  21. van Luenen, H.G., Colloms, S.D. & Plasterk, R.H. The mechanism of transposition of Tc3 in C. elegans. Cell 79, 293–301 (1994).

    Article  CAS  Google Scholar 

  22. Vos, J.C., De Baere, I. & Plasterk, R.H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 10, 755–761 (1996).

    Article  CAS  Google Scholar 

  23. Lampe, D.J., Churchill, M.E. & Robertson, H.M. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15, 5470–5479 (1996).

    Article  CAS  Google Scholar 

  24. Chiang, D.Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    Article  CAS  Google Scholar 

  25. Wangensteen, K.J. et al. A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology 47, 1714–1724 (2008).

    Article  CAS  Google Scholar 

  26. Bell, J.B. et al. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat. Protocols 2, 3153–3165 (2007).

    Article  CAS  Google Scholar 

  27. Lee, T.K. et al. Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clin. Cancer Res. 12, 6910–6919 (2006).

    Article  CAS  Google Scholar 

  28. Hirota, K., Murata, M., Itoh, T., Yodoi, J. & Fukuda, K. Redox-sensitive transactivation of epidermal growth factor receptor by tumor necrosis factor confers the NF-kappa B activation. J. Biol. Chem. 276, 25953–25958 (2001).

    Article  CAS  Google Scholar 

  29. Arsura, M. et al. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22, 412–425 (2003).

    Article  CAS  Google Scholar 

  30. Chang, C.M. et al. A minor tyrosine phosphorylation site located within the CAIN domain plays a critical role in regulating tissue-specific transformation by erbB kinase. J. Virol. 69, 1172–1180 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Boerner, J.L., Danielsen, A. & Maihle, N.J. Ligand-independent oncogenic signaling by the epidermal growth factor receptor: v-ErbB as a paradigm. Exp. Cell Res. 284, 111–121 (2003).

    Article  CAS  Google Scholar 

  32. Frederick, L., Wang, X.Y., Eley, G. & James, C.D. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 60, 1383–1387 (2000).

    CAS  PubMed  Google Scholar 

  33. Landau, M., Fleishman, S.J. & Ben-Tal, N. A putative mechanism for downregulation of the catalytic activity of the EGF receptor via direct contact between its kinase and C-terminal domains. Structure 12, 2265–2275 (2004).

    Article  CAS  Google Scholar 

  34. Sasaoka, T. et al. Involvement of ErbB2 in the signaling pathway leading to cell cycle progression from a truncated epidermal growth factor receptor lacking the C-terminal autophosphorylation sites. J. Biol. Chem. 271, 8338–8344 (1996).

    Article  CAS  Google Scholar 

  35. Bekaii-Saab, T., Williams, N., Plass, C., Calero, M.V. & Eng, C. A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma. BMC Cancer 6, 278 (2006).

    Article  Google Scholar 

  36. Buckley, A.F., Burgart, L.J., Sahai, V. & Kakar, S. Epidermal growth factor receptor expression and gene copy number in conventional hepatocellular carcinoma. Am. J. Clin. Pathol. 129, 245–251 (2008).

    Article  Google Scholar 

  37. Rajkumar, T. & Gullick, W.J. The type I growth factor receptors in human breast cancer. Breast Cancer Res. Treat. 29, 3–9 (1994).

    Article  CAS  Google Scholar 

  38. Lopes, L.F. & Bacchi, C.E. EGFR and gastrointestinal stromal tumor: an immunohistochemical and FISH study of 82 cases. Mod. Pathol. 20, 990–994 (2007).

    Article  CAS  Google Scholar 

  39. Villanueva, A. et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology (2008).

  40. Villanueva, A., Newell, P., Chiang, D.Y., Friedman, S.L. & Llovet, J.M. Genomics and signaling pathways in hepatocellular carcinoma. Semin. Liver Dis. 27, 55–76 (2007).

    Article  CAS  Google Scholar 

  41. Tanabe, K.K. et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. J. Am. Med. Assoc. 299, 53–60 (2008).

    Article  CAS  Google Scholar 

  42. Philip, P.A. et al. Phase II study of erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J. Clin. Oncol. 23, 6657–6663 (2005).

    Article  CAS  Google Scholar 

  43. Salvi, A. et al. In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. Int. J. Oncol. 31, 451–460 (2007).

    CAS  PubMed  Google Scholar 

  44. Takami, T. et al. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Res. 67, 9844–9851 (2007).

    Article  CAS  Google Scholar 

  45. Su, G.H., Song, J.J., Repasky, E.A., Schutte, M. & Kern, S.E. Mutation rate of MAP2K4/MKK4 in breast carcinoma. Hum. Mutat. 19, 81 (2002).

    Article  Google Scholar 

  46. Xin, W. et al. MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunohistochemistry and relationship to disease course. Clin. Cancer Res. 10, 8516–8520 (2004).

    Article  CAS  Google Scholar 

  47. Nakayama, K. et al. Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol. Ther. 5, 630–634 (2006).

    Article  CAS  Google Scholar 

  48. Iizuka, N. et al. Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis. Oncogene 22, 3007–3014 (2003).

    Article  CAS  Google Scholar 

  49. Moinzadeh, P., Breuhahn, K., Stutzer, H. & Schirmacher, P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis. Br. J. Cancer 92, 935–941 (2005).

    Article  CAS  Google Scholar 

  50. Zimmermann, U. et al. Chromosomal aberrations in hepatocellular carcinomas: relationship with pathological features. Hepatology 26, 1492–1498 (1997).

    Article  CAS  Google Scholar 

  51. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  Google Scholar 

  52. Wilber, A. et al. Messenger RNA as a source of transposase for sleeping beauty transposon-mediated correction of hereditary tyrosinemia type I. Mol. Ther. 15, 1280–1287 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Christine E. Nelson, Stefanie S. Breitbarth, Michelle K. Gleason and Geoff Hart for their excellent technical support; Jason B. Bell for performing the hydrodynamic injections; and Heidi Gruelich, Dana Farber Cancer Institute, for her kind gift pBabe-Puro-LTR-EGFR. We are also grateful to the Minnesota Supercomputing Institute for providing extensive computational resources (hardware and systems administration support) used to carry out the sequence analysis. A.V. is supported by a Sheila Sherlock fellowship from the European Association for the Study of the Liver. L.S.C. is supported by a 1K01CA122183-01 grant from the National Cancer Institute. N.G.C., N.A.J. and L.T. are supported by the Department of Health and Human Services, National Institutes of Health and the National Cancer Institute. J.M.L. is supported by the US National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK076986-01), Spanish National Institute of Health (SAF-2007-61898) and Samuel Waxman Cancer Research Foundation. D.A.L. is supported by U01 CA84221 and R01 CA113636 grants from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A Largaespada.

Ethics declarations

Competing interests

Sleeping Beauty (SB) technology was exclusively licensed to Discovery Genomics (DGI, Minneapolis), cofounded by D.A.L., who has an equity interest in DGI and is an unpaid scientific advisor to DGI. DGI, which is pursuing the use of SB for human gene therapy, contributed neither money nor personnel to the present work. The work reported in this paper is not related to DGI's future plans. The University of Minnesota has filed a patent application on the process of using transposons, such as SB, to find cancer genes in laboratory animals using a forward genetic approach like the one described here. D.A.L., L.S.C., A.J.D., N.A.J. and N.G.C. are named inventors on the patent.

Supplementary information

Supplementary Text and Figures

Figures 1–6, Tables 1–3, Methods (PDF 2700 kb)

Supplementary Data

8,060 non-redundant insertion sites (Excel file) (XLS 6327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keng, V., Villanueva, A., Chiang, D. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 27, 264–274 (2009). https://doi.org/10.1038/nbt.1526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing