Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes

Abstract

The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KiPS cell colony formation and cell line characterization.
Figure 2: KiPS cells display retroviral silencing, promoter demethylation and activation of endogenous pluripotency factors.
Figure 5: q-PCR and microarray analysis comparing keratinocytes, fibroblasts, KiPS cells and ES cells.
Figure 3: KiPS cells can differentiate into all three primary germ layers in vitro and in vivo.
Figure 4: The dynamics of efficient keratinocyte reprogramming.
Figure 6: Generation and characterization of KiPS cells from a single plucked hair.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  3. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  4. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  Google Scholar 

  5. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  Google Scholar 

  6. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008).

    Article  CAS  Google Scholar 

  7. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26, 916–924 (2008).

    Article  CAS  Google Scholar 

  8. Fuchs, E. Scratching the surface of skin development. Nature 445, 834–842 (2007).

    Article  CAS  Google Scholar 

  9. Unsworth, H.C., Aasen, T., McElwaine, S. & Kelsell, D.P. Tissue-specific effects of wild-type and mutant connexin 31: a role in neurite outgrowth. Hum. Mol. Genet. 16, 165–172 (2007).

    Article  CAS  Google Scholar 

  10. Hawley, R.G., Lieu, F.H., Fong, A.Z. & Hawley, T.S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

  11. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  12. O'Connor, M.D. et al. Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells 26, 1109–1116 (2008).

    Article  CAS  Google Scholar 

  13. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    Article  CAS  Google Scholar 

  14. Mitalipova, M.M. et al. Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23, 19–20 (2005).

    Article  CAS  Google Scholar 

  15. Raya, A. et al. Generation of cardiomyocytes from new human embryonic stem cell lines derived from poor-quality blastocysts. Cold Spring Harb. Symp. Quant. Biol. (in press).

  16. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).

    Article  CAS  Google Scholar 

  17. Assou, S. et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25, 961–973 (2007).

    Article  CAS  Google Scholar 

  18. Limat, A. & Noser, F.K. Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J. Invest. Dermatol. 87, 485–488 (1986).

    Article  CAS  Google Scholar 

  19. Kurata, S., Itami, S., Terashi, H. & Takayasu, S. Successful transplantation of cultured human outer root sheath cells as epithelium. Ann. Plast. Surg. 33, 290–294 (1994).

    Article  CAS  Google Scholar 

  20. Sridharan, R. & Plath, K. Illuminating the black box of reprogramming. Cell Stem Cell 2, 295–297 (2008).

    Article  CAS  Google Scholar 

  21. Segre, J.A., Bauer, C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22, 356–360 (1999).

    Article  CAS  Google Scholar 

  22. Gandarillas, A. & Watt, F.M. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 11, 2869–2882 (1997).

    Article  CAS  Google Scholar 

  23. Kim, J.B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  Google Scholar 

  24. Amoh, Y., Li, L., Katsuoka, K., Penman, S. & Hoffman, R.M. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc. Natl. Acad. Sci. USA 102, 5530–5534 (2005).

    Article  CAS  Google Scholar 

  25. Yu, H. et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am. J. Pathol. 168, 1879–1888 (2006).

    Article  CAS  Google Scholar 

  26. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  Google Scholar 

  27. de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  Google Scholar 

  28. Freberg, C.T., Dahl, J.A., Timoskainen, S. & Collas, P. Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol. Biol. Cell 18, 1543–1553 (2007).

    Article  CAS  Google Scholar 

  29. Virtaneva, K. et al. Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc. Natl. Acad. Sci. USA 98, 1124–1129 (2001).

    Article  CAS  Google Scholar 

  30. Wu, Z., Irizarry, R.A., Gentleman, R., Martinez-Murillo, F. & Spencer, F. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 99, 909–917 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ignacio Pizá Rodriguez for help and advice with KiPS cell characterization; José Miguel Andrés Vaquero for assistance with FACS analysis; Meritxell Carrió for expert assistance with cell culture techniques; Esther Melo, Lola Mulero Pérez and Mercé Gaudes Martí for bioimaging assistance; Yvonne Richaud and Teresa Lopez Rovira for excellent technical assistance and Luciano Di Croce, Centre for Genomic Regulation, Barcelona, for the gift of c-MYC T58A plasmid. F.G. was partially supported by a fellowship from the Swiss National Science Foundation. M.J.B. and G.T. were partially supported by the Ramón y Cajal program. This work was partially supported by grants from Ministerio de Educación y Ciencia grant BFU2006-12251, European Commission 'Marie-Curie Reintegration Grant' MIRG-CT-2007-046523 the Fondo de Investigaciones Sanitarias (RETIC-RD06/0010/0016, PI061897), Marató de TV3 (063430), the G. Harold and Leila Y. Mathers Charitable Foundation and Fundación Cellex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisúa Belmonte.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Data (PDF 24671 kb)

Supplementary Movie 1

Real-time movie of KiPS4F4 cells differentiated into beating cardiomyocytes. (MOV 3384 kb)

Supplementary Movie 2

Real-time movie of hair-derived iPS cells differentiated into beating cardiomyocytes (Hair sample 1). (MOV 2843 kb)

Supplementary Movie 3

Real-time movie of hair-derived iPS cells differentiated into beating cardiomyocytes (Hair sample 2). (MOV 2678 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aasen, T., Raya, A., Barrero, M. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276–1284 (2008). https://doi.org/10.1038/nbt.1503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing