Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy

Abstract

Viruses rely on the metabolic network of their cellular hosts to provide energy and building blocks for viral replication. We developed a flux measurement approach based on liquid chromatography–tandem mass spectrometry to quantify changes in metabolic activity induced by human cytomegalovirus (HCMV). This approach reliably elucidated fluxes in cultured mammalian cells by monitoring metabolome labeling kinetics after feeding cells 13C-labeled forms of glucose and glutamine. Infection with HCMV markedly upregulated flux through much of the central carbon metabolism, including glycolysis. Particularly notable increases occurred in flux through the tricarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway. Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of both HCMV and influenza A, another enveloped virus. These results show that fatty acid synthesis is essential for the replication of two divergent enveloped viruses and that systems-level metabolic flux profiling can identify metabolic targets for antiviral therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Flux profiling of uninfected and HCMV-infected cells.
Figure 2: Profiling of TCA cycle fluxes in uninfected and HCMV-infected cells.
Figure 3: Metabolite concentrations and fluxes in uninfected and HCMV-infected confluent human fibroblasts.
Figure 4: HCMV induces lipogenesis.
Figure 5: Effect of pharmacological inhibitors of fatty acid biosynthesis on HCMV and influenza replication.

References

  1. 1

    Fiehn, O. Metabolomics–the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Nicholson, J.K., Connelly, J., Lindon, J.C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Wikoff, W.R., Gangoiti, J.A., Barshop, B.A. & Siuzdak, G. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clin. Chem. 53, 2037–2039 (2007).

    Article  Google Scholar 

  5. 5

    Holmes, E. et al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med. 3, e327 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Sabatine, M.S. et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112, 3868–3875 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Kind, T., Tolstikov, V., Fiehn, O. & Weiss, R.H. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem. 363, 185–195 (2007).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Rezzi, S. et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J. Proteome Res. 6, 4469–4477 (2007).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Bruggeman, C.A. Does cytomegalovirus play a role in atherosclerosis? Herpes 7, 51–54 (2000).

    PubMed  Google Scholar 

  10. 10

    Reinhardt, B. et al. Human cytomegalovirus-induced reduction of extracellular matrix proteins in vascular smooth muscle cell cultures: a pathomechanism in vasculopathies? J. Gen. Virol. 87, 2849–2858 (2006).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Gerna, G., Baldanti, F. & Revello, M.G. Pathogenesis of human cytomegalovirus infection and cellular targets. Hum. Immunol. 65, 381–386 (2004).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Burny, W., Liesnard, C., Donner, C. & Marchant, A. Epidemiology, pathogenesis and prevention of congenital cytomegalovirus infection. Expert Rev. Anti Infect. Ther. 2, 881–894 (2004).

    Article  PubMed  Google Scholar 

  13. 13

    Myerson, D., Hackman, R.C., Nelson, J.A., Ward, D.C. & McDougall, J.K. Widespread presence of histologically occult cytomegalovirus. Hum. Pathol. 15, 430–439 (1984).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Browne, E.P., Wing, B., Coleman, D. & Shenk, T. Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol. 75, 12319–12330 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Furukawa, T., Fioretti, A. & Plotkin, S. Growth characteristics of cytomegalovirus in human fibroblasts with demonstration of protein synthesis early in viral replication. J. Virol. 11, 991–997 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Tanaka, S., Furukawa, T. & Plotkin, S.A. Human cytomegalovirus stimulates host cell RNA synthesis. J. Virol. 15, 297–304 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Landini, M.P. Early enhanced glucose uptake in human cytomegalovirus-infected cells. J. Gen. Virol. 65, 1229–1232 (1984).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Munger, J., Bajad, S.U., Coller, H.A., Shenk, T. & Rabinowitz, J.D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2, e132 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Szyperski, T. Biosynthetically directed fractional C-13-labeling of proteinogenic amino-acids - an efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433–448 (1995).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Zhao, J., Baba, T., Mori, H. & Shimizu, K. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol. 64, 91–98 (2004).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Boros, L.G., Brackett, D.J. & Harrigan, G.G. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr. Cancer Drug Targets 3, 445–453 (2003).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Yuan, J., Fowler, W.U., Kimball, E., Lu, W. & Rabinowitz, J.D. Kinetic flux profiling of nitrogen assimilation in Escherichia coli . Nat. Chem. Biol. 2, 529–530 (2006).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Yuan, J., Bennett, B.D. & Rabinowitz, J.D. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Frenkel, R. Regulation and physiological functions of malic enzymes. Curr. Top. Cell. Regul. 9, 157–181 (1975).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Chatham, J.C., Forder, J.R., Glickson, J.D. & Chance, E.M. Calculation of absolute metabolic flux and the elucidation of the pathways of glutamate labeling in perfused rat heart by 13C NMR spectroscopy and nonlinear least squares analysis. J. Biol. Chem. 270, 7999–8008 (1995).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Bennett, B.D., Yuan, J., Kimball, E.H. & Rabinowitz, J.D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3, 1299–1311 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Feng, X.J. & Rabitz, H. Optimal identification of biochemical reaction networks. Biophys. J. 86, 1270–1281 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    van Winden, W.A. et al. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113–7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEM Yeast Res. 5, 559–568 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Fishman, J.A. et al. Dosing of intravenous ganciclovir for the prophylaxis and treatment of cytomegalovirus infection in solid organ transplant recipients. Transplantation 69, 389–394 (2000).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Gibson, J.P. et al. Toxicity and teratogenicity studies with the hypolipidemic drug RMI 14,514 in rats. Fundam. Appl. Toxicol. 1, 19–25 (1981).

    CAS  PubMed  Google Scholar 

  32. 32

    Abu-Elheiga, L. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl. Acad. Sci. USA 102, 12011–12016 (2005).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A. & Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Kariya, T. & Wille, L.J. Inhibition of fatty acid synthesis by RMI 14,514 (5-tetradecyloxy-2-furoic acid). Biochem. Biophys. Res. Commun. 80, 1022–1024 (1978).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Pizer, E.S., Chrest, F.J., DiGiuseppe, J.A. & Han, W.F. Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res. 58, 4611–4615 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Chambers, J. et al. DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J. Virol. 73, 5757–5766 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Pizer, E.S. et al. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 56, 2745–2747 (1996).

    CAS  PubMed  Google Scholar 

  38. 38

    Lee, W.N. et al. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2–13C2]glucose. Am. J. Physiol. 274, E843–E851 (1998).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Zupke, C., Sinskey, A.J. & Stephanopoulos, G. Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl. Microbiol. Biotechnol. 44, 27–36 (1995).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Chance, E.M., Seeholzer, S.H., Kobayashi, K. & Williamson, J.R. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem. 258, 13785–13794 (1983).

    CAS  PubMed  Google Scholar 

  41. 41

    Ishii, N. et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597 (2007).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Andrei, G., De Clercq, E. & Snoeck, R. Novel inhibitors of human CMV. Curr. Opin. Investig. Drugs 9, 132–145 (2008).

    CAS  PubMed  Google Scholar 

  43. 43

    van Meer, G. & Simons, K. Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J. 1, 847–852 (1982).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Schmidt, M.F. The transfer of myristic and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus. EMBO J. 3, 2295–2300 (1984).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Conti, G., Portincasa, P. & Chezzi, C. Cerulenin inhibits production of mature virion particles in chick embryo fibroblasts infected by influenza A viruses. Res. Virol. 146, 141–149 (1995).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Kapadia, S.B. & Chisari, F.V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. USA 102, 2561–2566 (2005).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Wikoff, W.R., Pendyala, G., Siuzdak, G. & Fox, H.S. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J. Clin. Invest. 118, 2661–2669 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Brass, A.L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Tong, L. & Harwood, H.J., Jr. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J. Cell. Biochem. 99, 1476–1488 (2006).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Bauer, D.E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C.B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Yu, D., Smith, G.A., Enquist, L.W. & Shenk, T. Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J. Virol. 76, 2316–2328 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Bajad, S.U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A. 1125, 76–88 (2006).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Luo, B., Groenke, K., Takors, R., Wandrey, C. & Oldiges, M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A. 1147, 153–164 (2007).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Varnum, S.M. et al. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol. 78, 10960–10966 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Silva, M.C., Yu, Q.C., Enquist, L. & Shenk, T. Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J. Virol. 77, 10594–10605 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Munger, J., Yu, D. & Shenk, T. UL26-deficient human cytomegalovirus produces virions with hypophosphorylated pp28 tegument protein that is unstable within newly infected cells. J. Virol. 80, 3541–3548 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) Metabolomics Roadmap initiative (AI068678), NIH grants CA82396 and CA85786, and the NIH Center for Systems Biology at Princeton University (5 P50 GM071508). Development of the fluxomic technology was supported by the National Science Foundation Faculty Early Career Development award program (MCB-0643859), the Beckman Foundation, the American Heart Association (0635188N) and the National Science Foundation Dynamic Data-Driven Applications Systems program (CNS-0549181). J. Munger was supported by a postdoctoral fellowship from the American Cancer Society.

Author information

Affiliations

Authors

Contributions

J. Munger conducted experiments, analyzed data, conceived ideas and prepared the manuscript; B.D.B. conducted experiments, analyzed data, conceived ideas and prepared the manuscript; A.P. analyzed data; X.-J.F. conceived ideas and analyzed data; J. McArdle conducted experiments and analyzed data; H.A.R. conceived ideas; T.S. conceived ideas and prepared the manuscript; and J.D.R. conceived ideas, analyzed data and prepared the manuscript.

Corresponding author

Correspondence to Joshua D Rabinowitz.

Supplementary information

Supplementary Text and Figures

Figures 1–5, Tables 1–10, Methods, Computational Code (PDF 3088 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munger, J., Bennett, B., Parikh, A. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26, 1179–1186 (2008). https://doi.org/10.1038/nbt.1500

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing