Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-resolution metagenomics targets specific functional types in complex microbial communities

Abstract

Most microbes in the biosphere remain unculturable1. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) can be used to study the genetic and metabolic properties of natural microbial communities2,3,4. However, in communities of high complexity, metagenomics fails to link specific microbes to specific ecological functions. To overcome this limitation, we developed a method to target microbial subpopulations by labeling DNA through stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis of microbes from Lake Washington in Seattle that oxidize single-carbon (C1) compounds shows specific sequence enrichments in response to different C1 substrates, revealing the ecological roles of individual phylotypes. We also demonstrate the utility of our approach by extracting a nearly complete genome of a novel methylotroph, Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This high-resolution, targeted metagenomics approach may be applicable to a wide variety of ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taxonomic distribution of 16S rRNA gene sequences from metagenomes.
Figure 2: Metabolic features of M. mobilis (left) compared to metabolic features of M. flagellatus (right) as deduced from genomic comparisons.
Figure 3: Comparison of gene clusters involved in methylotrophy in M. mobilis and M. flagellatus.

Similar content being viewed by others

Accession codes

Accessions

DDBJ/GenBank/EMBL

References

  1. The New Science of Metagenomics Revealing the Secrets of Our Microbial Planet (Committee on Metagenomics, Board of Life Sciences, Division of Earth and Life Studies, The National Academies Press, 2007).

  2. Tyson, G.W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  Google Scholar 

  3. Tringe, S.G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  Google Scholar 

  4. Rusch, D.B. et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 5, e77 (2007).

    Article  Google Scholar 

  5. Hanson, R.S. & Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Guenther, A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49, 837–844 (2002).

    Article  CAS  Google Scholar 

  7. Lidstrom, M.E. Aerobic methylotrophic procaryotes. in The Prokaryotes (eds. Balows, A., Truper, H.G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 613–634 (Springer, New York, 2006).

    Google Scholar 

  8. McDonald, I.R., Bodrossy, L., Chen, Y. & Murrell, J.C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74, 1305–1315 (2008).

    Article  CAS  Google Scholar 

  9. Ward, N. et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2, e303 (2004).

    Article  Google Scholar 

  10. Kane, S.R. et al. Whole-genome analysis of Methyl tert-Butyl Ether (MTBE)-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J. Bacteriol. 189, 1931–1945 (2007).

    Article  CAS  Google Scholar 

  11. Chistoserdova, L. et al. The genome of Methylobacillus flagellatus, the molecular basis for obligate methylotrophy, and the polyphyletic origin of methylotrophy. J. Bacteriol. 189, 4020–4027 (2007).

    Article  CAS  Google Scholar 

  12. Radajewski, S., Ineson, P., Parekh, N.R. & Murrell, J.C. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–649 (2000).

    Article  CAS  Google Scholar 

  13. Auman, A.J., Stolyar, S., Costello, A.M. & Lidstrom, M.E. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol. 66, 5259–5266 (2000).

    Article  CAS  Google Scholar 

  14. Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E. & Chistoserdova, L. Methylotenera mobilis gen. nov., sp. nov, an obligately methylamine-utilizing bacterium within the family Methylophilaceae . Int. J. Syst. Evol. Microbiol. 56, 2819–2823 (2006).

    Article  CAS  Google Scholar 

  15. Kalyuzhnya, M.G., Lidstrom, M.E. & Chistoserdova, L. Real-time detection of actively metabolizing microbes via redox sensing as applied to methylotroph populations in Lake Washington. ISME J. 2, 696–706 (2008).

    Article  Google Scholar 

  16. McHardy, A.C., Garcia Martin, H., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4, 63–72 (2007).

    Article  CAS  Google Scholar 

  17. Vorholt, J.A., Marx, C.J., Lidstrom, M.E. & Thauer, R.K. Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J. Bacteriol. 182, 6645–6650 (2000).

    Article  CAS  Google Scholar 

  18. Ginzburg, B. et al. DMS formation by dimethylsulfoniopropionate route in freshwater. Environ. Sci. Technol. 32, 2130–2136 (1998).

    Article  CAS  Google Scholar 

  19. Liu, M. et al. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J. Bacteriol. 186, 1503–1517 (2004).

    Article  CAS  Google Scholar 

  20. Krupovic, M. et al. Genome characterization of lipid-containing marine bacteriophage PM2 by transposon insertion mutagenesis. J. Virol. 80, 9270–9278 (2006).

    Article  CAS  Google Scholar 

  21. Wartiainen, I., Hestnes, A.G., McDonald, I.R. & Svening, M.M. Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). Int. J. Syst. Evol. Microbiol. 56, 109–113 (2006).

    Article  CAS  Google Scholar 

  22. Pohlmann, A. et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutopha H16. Nat. Biotechnol. 24, 1257–1262 (2006).

    Article  Google Scholar 

  23. Islam, T., Jensen, S., Reigstad, L.J., Larsen, O. & Birkeland, N.-K. Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobiaphylum. Proc. Natl. Acad. Sci. USA 105, 300–304 (2008).

    Article  CAS  Google Scholar 

  24. Dunfield, P.F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia . Nature 450, 879–882 (2007).

    Article  CAS  Google Scholar 

  25. Pol, A. et al. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450, 874–878 (2007).

    Article  CAS  Google Scholar 

  26. Sauer, K. & Thauer, R.K. Methanol: coenzyme M methyltransferase from Methanosarcina barkeri. Zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction. Eur. J. Biochem. 249, 280–285 (1997).

    Article  CAS  Google Scholar 

  27. Das, A. et al. Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica . Proteins: Struct. Funct. Bioinform. 67, 167–176 (2007).

    Article  CAS  Google Scholar 

  28. Lösekann, T. et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl. Environ. Microbiol. 73, 3348–3362 (2007).

    Article  Google Scholar 

  29. Nercessian, O., Noyes, E., Kalyuzhnaya, M.G., Lidstrom, M.E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).

    Article  CAS  Google Scholar 

  30. Chou, H.H. & Holmes, M.H. DNA sequence quality trimming and vector removal. Bioinformatics 17, 1093–1104 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation as part of the Microbial Observatories program (MCB-0604269). This work was performed, in part, under the auspices of the US Department of Energy's Office of Science Biological and Environmental Research Program, and by the University of California, Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48, Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231 and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. The sequencing for the project was provided through the US Department of Energy Community Sequencing Program (http://www.jgi.doe.gov/CSP/index.html).

Author information

Authors and Affiliations

Authors

Contributions

M.G.K., M.E.L. and L.C. conceived the project. M.E.L. and L.C. coordinated project execution. M.G.K. collected samples, performed SIP, purified DNA for sequencing and performed microarray hybridizations. D.C.B. and P.M.R. oversaw library construction and sequencing. S.G.T. oversaw sequence assembly and analysis. A.C.C. and A.L. carried out assemblies. A.S. and I.V.G. conducted gene prediction and annotation. A.C.M. and I.R. carried out binning. E.S. and V.M.M. carried out data processing and loading into IMG/M. L.C. and N.I. carried out metabolic reconstruction. S.R.L. and M.G.K. performed species richness estimates. D.S. carried our microarray design. M.G.K., M.E.L. and L.C. wrote the initial draft of the paper; all other authors contributed.

Corresponding author

Correspondence to Ludmila Chistoserdova.

Supplementary information

Supplementary Text and Figures

Figures 1–7, Tables 1–11, Methods (PDF 2145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyuzhnaya, M., Lapidus, A., Ivanova, N. et al. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26, 1029–1034 (2008). https://doi.org/10.1038/nbt.1488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing