Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment

Abstract

Lysosomal storage diseases are characterized by deficiencies in lysosomal enzymes, allowing accumulation of target substrate in cells and eventually causing cell death. Enzyme replacement therapy is the principal treatment for most of these diseases. However, these therapies are often complicated by immune responses to the enzymes, blocking efficacy and causing severe adverse outcomes by neutralizing product activity. It is thus crucial to understand the relationships between genetic mutations, endogenous residual enzyme proteins (cross-reactive immunologic material), development of neutralizing antibodies and their impact on clinical outcomes of lysosomal storage diseases. For patients in whom neutralizing antibodies may cause severe adverse clinical outcomes, it is paramount to develop tolerance inducing protocols to preclude, where predictable, or treat such life-threatening responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of neutralizing antibody on enzyme entry and activity in ERT.
Figure 2: Neutralization assays.

Similar content being viewed by others

References

  1. Amalfitano, A. et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet. Med. 3, 132–138 (2001).

    CAS  PubMed  Google Scholar 

  2. Kishnani, P.S. et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 68, 99–109 (2007).

    CAS  PubMed  Google Scholar 

  3. Goodeve, A. The incidence of inhibitor development according to specific mutations–and treatment? Blood Coagul. Fibrinolysis 14 Suppl 1, S17–S21 (2003).

    CAS  PubMed  Google Scholar 

  4. Oldenburg, J. & Pavlova, A. Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia 12 Suppl 6, 15–22 (2006).

    CAS  PubMed  Google Scholar 

  5. Antonarakis, S.E. et al. Factor VIII gene inversions in severe hemophilia A: results of an international consortium study. Blood 86, 2206–2212 (1995).

    CAS  PubMed  Google Scholar 

  6. Lozier, J.N. et al. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc. Natl. Acad. Sci. USA 99, 12991–12996 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Warrier, I. et al. Factor IX inhibitors and anaphylaxis in hemophilia B. J. Pediatr. Hematol. Oncol. 19, 23–27 (1997).

    CAS  PubMed  Google Scholar 

  8. Thorland, E.C. et al. Anaphylactic response to factor IX replacement therapy in haemophilia B patients: complete gene deletions confer the highest risk. Haemophilia 5, 101–105 (1999).

    CAS  PubMed  Google Scholar 

  9. Germain, D.P., Kaneski, C.R. & Brady, R.O. Mutation analysis of the acid beta-glucosidase gene in a patient with type 3 Gaucher disease and neutralizing antibody to alglucerase. Mutat. Res. 483, 89–94 (2001).

    CAS  PubMed  Google Scholar 

  10. Hunley, T.E. et al. Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease. Pediatrics 114, e532–e535 (2004).

    PubMed  Google Scholar 

  11. Linthorst, G.E., Hollak, C.E., Donker-Koopman, W.E., Strijland, A. & Aerts, J.M. Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int. 66, 1589–1595 (2004).

    CAS  PubMed  Google Scholar 

  12. Vedder, A.C. et al. Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS. ONE 2, e598 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Shimada, E. et al. Anaphylactic transfusion reactions in haptoglobin-deficient patients with IgE and IgG haptoglobin antibodies. Transfusion 42, 766–773 (2002).

    CAS  PubMed  Google Scholar 

  14. Horn, J. et al. Anti-IgA antibodies in common variable immunodeficiency (CVID): diagnostic workup and therapeutic strategy. Clin. Immunol. 122, 156–162 (2007).

    CAS  PubMed  Google Scholar 

  15. Goodeve, A.C., Williams, I., Bray, G.L. & Peake, I.R. Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (Recombinate). Recombinate PUP Study Group. Thromb. Haemost. 83, 844–848 (2000).

    CAS  PubMed  Google Scholar 

  16. Garman, S.C. & Garboczi, D.N. Structural basis of Fabry disease. Mol. Genet. Metab. 77, 3–11 (2002).

    CAS  PubMed  Google Scholar 

  17. Hermans, M.M. et al. Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum. Mutat. 23, 47–56 (2004).

    CAS  PubMed  Google Scholar 

  18. Rosenberg, M., Kingma, W., Fitzpatrick, M.A. & Richards, S.M. Immunosurveillance of alglucerase enzyme therapy for Gaucher patients: induction of humoral tolerance in seroconverted patients after repeat administration. Blood 93, 2081–2088 (1999).

    CAS  PubMed  Google Scholar 

  19. Fabbro, D., Desnick, R.J. & Grabowski, G.A. Gaucher disease: genetic heterogeneity within and among the subtypes detected by immunoblotting. Am. J. Hum. Genet. 40, 15–31 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilcox, W.R. et al. Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am. J. Hum. Genet. 75, 65–74 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kakavanos, R., Turner, C.T., Hopwood, J.J., Kakkis, E.D. & Brooks, D.A. Immune tolerance after long-term enzyme-replacement therapy among patients who have mucopolysaccharidosis I. Lancet 361, 1608–1613 (2003).

    CAS  PubMed  Google Scholar 

  22. Brackmann, H.H., Oldenburg, J. & Schwaab, R. Immune tolerance for the treatment of factor VIII inhibitors–twenty years' 'bonn protocol'. Vox Sang. 70 Suppl 1, 30–35 (1996).

    PubMed  Google Scholar 

  23. Berntorp, E., Astermark, J. & Carlborg, E. Immune tolerance induction and the treatment of hemophilia. Malmo protocol update. Haematologica 85, 48–50 (2000).

    CAS  PubMed  Google Scholar 

  24. Waldmann, H., Adams, E., Fairchild, P. & Cobbold, S. Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol. Rev. 212, 301–313 (2006).

    CAS  PubMed  Google Scholar 

  25. Cobbold, S.P. et al. Immune privilege induced by regulatory T cells in transplantation tolerance. Immunol. Rev. 213, 239–255 (2006).

    CAS  PubMed  Google Scholar 

  26. Herndon, R.M. et al. Eight-year immunogenicity and safety of interferon beta-1a-Avonex treatment in patients with multiple sclerosis. Mult. Scler. 11, 409–419 (2005).

    CAS  PubMed  Google Scholar 

  27. Reipert, B.M., van Helden, P.M., Schwarz, H.P. & Hausl, C. Mechanisms of action of immune tolerance induction against factor VIII in patients with congenital haemophilia A and factor VIII inhibitors. Br. J. Haematol. 136, 12–25 (2007).

    CAS  PubMed  Google Scholar 

  28. Ewenstein, B.M. et al. Nephrotic syndrome as a complication of immune tolerance in hemophilia B. Blood 89, 1115–1116 (1997).

    CAS  PubMed  Google Scholar 

  29. Weigle, W.O. Factors and events in the activation, proliferation, and differentiation of B cells. Crit. Rev. Immunol. 7, 285–324 (1987).

    CAS  PubMed  Google Scholar 

  30. Goodnow, C.C., Sprent, J., Fazekas de St. Groth, B. & Vinuesa, C.G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Adelstein, S. et al. Induction of self-tolerance in T cells but not B cells of transgenic mice expressing little self antigen. Science 251, 1223–1225 (1991).

    CAS  PubMed  Google Scholar 

  32. Haribhai, D. et al. A threshold for central T cell tolerance to an inducible serum protein. J. Immunol. 170, 3007–3014 (2003).

    CAS  PubMed  Google Scholar 

  33. Cornall, R.J. & Goodnow, C.C. B cell antigen receptor signalling in the balance of tolerance and immunity. Novartis Found. Symp. 215, 21–30 (1998).

    CAS  PubMed  Google Scholar 

  34. Goodnow, C.C. Transgenic mice and analysis of B-cell tolerance. Annu. Rev. Immunol. 10, 489–518 (1992).

    CAS  PubMed  Google Scholar 

  35. Zinkernagel, R.M. Localization dose and time of antigens determine immune reactivity. Semin. Immunol. 12, 163–171 (2000).

    CAS  PubMed  Google Scholar 

  36. Chentoufi, A.A. & Polychronakos, C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes 51, 1383–1390 (2002).

    CAS  PubMed  Google Scholar 

  37. Romball, C.G. & Weigle, W.O. Cytokines in the induction and circumvention of peripheral tolerance. J. Interferon Cytokine Res. 19, 671–678 (1999).

    CAS  PubMed  Google Scholar 

  38. Whitmer, K.J., Romball, C.G. & Weigle, W.O. Induction of tolerance to human gamma-globulin in FcR gamma- and Fc gammaRII-deficient mice. J. Immunol. 159, 644–649 (1997).

    CAS  PubMed  Google Scholar 

  39. Pircher, H. et al. Tolerance induction by clonal deletion of CD4+8+ thymocytes in vitro does not require dedicated antigen-presenting cells. Eur. J. Immunol. 23, 669–674 (1993).

    CAS  PubMed  Google Scholar 

  40. Kang, H.K., Michaels, M.A., Berner, B.R. & Datta, S.K. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J. Immunol. 174, 3247–3255 (2005).

    CAS  PubMed  Google Scholar 

  41. Kyewski, B. & Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006).

    CAS  PubMed  Google Scholar 

  42. Zhang, M. et al. T cell tolerance to a neo-self antigen expressed by thymic epithelial cells: the soluble form is more effective than the membrane-bound form. J. Immunol. 170, 3954–3962 (2003).

    CAS  PubMed  Google Scholar 

  43. Ohashi, P.S. & DeFranco, A.L. Making and breaking tolerance. Curr. Opin. Immunol. 14, 744–759 (2002).

    CAS  PubMed  Google Scholar 

  44. Daley, S.R., Ma, J., Adams, E., Cobbold, S.P. & Waldmann, H. A key role for TGF-beta signaling to T cells in the long-term acceptance of allografts. J. Immunol. 179, 3648–3654 (2007).

    CAS  PubMed  Google Scholar 

  45. Li, J. et al. Thrombocytopenia caused by the development of antibodies to thrombo-poietin. Blood 98, 3241–3248 (2001).

    CAS  PubMed  Google Scholar 

  46. Haznedaroglu, I.C., Goker, H., Turgut, M., Buyukasik, Y. & Benekli, M. Thrombopoietin as a drug: biologic expectations, clinical realities, and future directions. Clin. Appl. Thromb. Hemost. 8, 193–212 (2002).

    CAS  PubMed  Google Scholar 

  47. Koren, E., Zuckerman, L.A. & Mire-Sluis, A.R. Immune responses to therapeutic proteins in humans–clinical significance, assessment and prediction. Curr. Pharm. Biotechnol. 3, 349–360 (2002).

    CAS  PubMed  Google Scholar 

  48. Kuter, D.J. & Begley, C.G. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100, 3457–3469 (2002).

    CAS  PubMed  Google Scholar 

  49. Cardoso, A.I. et al. Heterologous humoral immune response in patients treated with human growth hormone from different sources. Acta Endocrinol. (Copenh.) 129, 20–25 (1993).

    CAS  Google Scholar 

  50. Ahangari, G. et al. Growth hormone antibodies formation in patients treated with recombinant human growth hormone. Int. J. Immunopathol. Pharmacol. 17, 33–38 (2004).

    CAS  PubMed  Google Scholar 

  51. Mire-Sluis, A.R. et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods 289, 1–16 (2004).

    CAS  PubMed  Google Scholar 

  52. Shankar, G., Shores, E., Wagner, C. & Mire-Sluis, A. Scientific and regulatory considerations on the immunogenicity of biologics. Trends Biotechnol. 24, 274–280 (2006).

    CAS  PubMed  Google Scholar 

  53. Kornfeld, S. Structure and function of the mannose 6-phosphate/insulin-like growth factor II receptors. Annu. Rev. Biochem. 61, 307–330 (1992).

    CAS  PubMed  Google Scholar 

  54. Ghosh, P., Dahms, N.M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212 (2003).

    CAS  PubMed  Google Scholar 

  55. Brooks, D.A., Kakavanos, R. & Hopwood, J.J. Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder. Trends Mol. Med. 9, 450–453 (2003).

    CAS  PubMed  Google Scholar 

  56. Vedder, A.C. et al. Plasma chitotriosidase in male Fabry patients: a marker for monitoring lipid-laden macrophages and their correction by enzyme replacement therapy. Mol. Genet. Metab. 89, 239–244 (2006).

    CAS  PubMed  Google Scholar 

  57. Lacroix-Desmazes, S. et al. The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N. Engl. J. Med. 346, 662–667 (2002).

    CAS  PubMed  Google Scholar 

  58. Mellman, I. & Plutner, H. Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes. J. Cell Biol. 98, 1170–1177 (1984).

    CAS  PubMed  Google Scholar 

  59. Sun, B. et al. Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am. J. Hum. Genet. 81, 1042–1049 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Garman, R.D., Munroe, K. & Richards, S.M. Methotrexate reduces antibody responses to recombinant human alpha-galactosidase A therapy in a mouse model of Fabry disease. Clin. Exp. Immunol. 137, 496–502 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Salooja, N., Kemball-Cook, G., Tuddenham, E.G. & Dyson, J. Use of a non-depleting anti-CD4 antibody to modulate the immune response to coagulation factors VIII and IX. Br. J. Haematol. 118, 839–842 (2002).

    CAS  PubMed  Google Scholar 

  62. Bennett, C.L. et al. Long-term outcome of individuals with pure red cell aplasia and antierythropoietin antibodies in patients treated with recombinant epoetin: a follow-up report from the Research on Adverse Drug Events and Reports (RADAR) Project. Blood 106, 3343–3347 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Herzog, R.W. et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum. Gene Ther. 13, 1281–1291 (2002).

    CAS  PubMed  Google Scholar 

  64. Mongini, P.K., Longo, D.L. & Paul, W.E. T cell regulation of immunoglobulin class expression in the B cell response to TNP-Ficoll: characterization of the T cell responsible for preferential enhancement of the IgG2a response. J. Immunol. 132, 1647–1653 (1984).

    CAS  PubMed  Google Scholar 

  65. Withers, D.R. et al. T cell-dependent survival of CD20+ and CD20- plasma cells in human secondary lymphoid tissue. Blood 109, 4856–4864 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Herve, M. et al. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J. Exp. Med. 204, 1583–1593 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. St. Clair, E.W. et al. New reagents on the horizon for immune tolerance. Annu. Rev. Med. 58, 329–346 (2007).

    CAS  PubMed  Google Scholar 

  68. Casadevall, N., Eckardt, K.U. & Rossert, J. Epoetin-induced autoimmune pure red cell aplasia. J. Am. Soc. Nephrol. 16 Suppl 1, S67–S69 (2005).

    CAS  PubMed  Google Scholar 

  69. Winsor-Hines, D. et al. Induction of immunological tolerance/hyporesponsiveness in baboons with a nondepleting CD4 antibody. J. Immunol. 173, 4715–4723 (2004).

    CAS  PubMed  Google Scholar 

  70. Joseph, A., Munroe, K. Houseman, M., Garman, R. & Richards, S. Immune tolerance induction to enzyme-replacement therapy by co-administration of short term, low dose methotrexate in a murine Pompe disease model. Clin. Exp. Immunol. 152, 138–146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kakkis, E. et al. Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. Proc. Natl. Acad. Sci. USA 101, 829–834 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao, W. et al. Contrasting Effects of Cyclosporine and Rapamycin in De Novo Generation of Alloantigen-Specific Regulatory T Cells. Am. J. Transplant. 7, 1722–1732 (2007).

    CAS  PubMed  Google Scholar 

  73. Zeiser, R. et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood 108, 390–399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Siemionow, M., Oke, R., Ozer, K., Izycki, D. & Prajapati,R. Induction of donor-specific tolerance in rat hind-limb allografts under antilymphocyte serum and cyclosporine A protocol. J. Hand Surg. 27, 1095–1103 (2002).

    Google Scholar 

  75. Huang, W.H., Yan, Y., De Boer, B., Bishop, G.A. & House, A.K. A short course of cyclosporine immunosuppression inhibits rejection but not tolerance of rat liver allografts. Transplantation 75, 368–374 (2003).

    CAS  PubMed  Google Scholar 

  76. Kremer, J.M. et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 2263–2271 (2005).

    CAS  PubMed  Google Scholar 

  77. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  78. Tivol, E.A. et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol. 158, 5091–5094 (1997).

    CAS  PubMed  Google Scholar 

  79. Desai, D.D. et al. Fc gamma receptor IIB on dendritic cells enforces peripheral tolerance by inhibiting effector T cell responses. J. Immunol. 178, 6217–6226 (2007).

    CAS  PubMed  Google Scholar 

  80. Anandacoomarasamy, A., Gibson, J. & McGill, N. 'Cure' of life-threatening antiphospholipid syndrome with rituximab. Intern. Med. J. 36, 474–475 (2006).

    CAS  PubMed  Google Scholar 

  81. Chemnitz, J. et al. Successful treatment of severe thrombotic thrombocytopenic purpura with the monoclonal antibody rituximab. Am. J. Hematol. 71, 105–108 (2002).

    CAS  PubMed  Google Scholar 

  82. Darabi, K. & Berg, A.H. Rituximab can be combined with daily plasma exchange to achieve effective B-cell depletion and clinical improvement in acute autoimmune TTP. Am. J. Clin. Pathol. 125, 592–597 (2006).

    CAS  PubMed  Google Scholar 

  83. Keystone, E. et al. Safety and efficacy of additional courses of rituximab in patients with active rheumatoid arthritis: An open-label extension analysis. Arthritis Rheum. 56, 3896–3908 (2007).

    CAS  PubMed  Google Scholar 

  84. Bearden, C.M. et al. Rituximab inhibits the in vivo primary and secondary antibody response to a neoantigen, bacteriophage phiX174. Am. J. Transplant. 5, 50–57 (2005).

    CAS  PubMed  Google Scholar 

  85. Harada, H. et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81, 2658–2663 (1993).

    CAS  PubMed  Google Scholar 

  86. Wisselaar, H.A., Kroos, M.A., Hermans, M.M., van Beeumen, J. & Reuser, A.J. Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J. Biol. Chem. 268, 2223–2231 (1993).

    CAS  PubMed  Google Scholar 

  87. Harmatz, P. et al. Enzyme replacement therapy for mucopolysaccharidosis VI: A phase 3, randomized, double-blind, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J. Pediatr. 148, 533–539 (2006).

    CAS  PubMed  Google Scholar 

  88. Knobe, K.E., Sjorin, E., Tengborn, L.I., Petrini, P. & Ljung, R.C. Inhibitors in the Swedish population with severe haemophilia A and B: a 20-year survey. Acta Paediatr. 91, 910–914 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Kozlowski, M. Norcross and M. Shapiro for critical readings of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Lozier, J., Johnson, G. et al. Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment. Nat Biotechnol 26, 901–908 (2008). https://doi.org/10.1038/nbt.1484

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing