Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

Abstract

Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth–Moon system1,2,3,4,5. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained6. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48Ca/44Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun7 reveal the full range of inner-Solar-System mass-independent 48Ca/44Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near the end of the protoplanetary disk’s lifetime.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mass-independent μ48Ca data for individual chondrules and bulk meteorites.
Figure 2: The μ48Ca value of planetary bodies versus their mass and their maximum accretion age.
Figure 3: Accretion rate of inner-disk mass versus time.

References

  1. 1

    Zhang, J ., Dauphas, N ., Davis, A. M ., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012)

    ADS  CAS  Google Scholar 

  2. 2

    Trinquier, A . et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009)

    ADS  CAS  PubMed  Google Scholar 

  3. 3

    Schiller, M ., Paton, C. & Bizzarro, M. Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. Geochim. Cosmochim. Acta 149, 88–102 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017)

    ADS  CAS  PubMed  Google Scholar 

  5. 5

    Young, E. D . et al. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351, 493–496 (2016)

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Burkhardt, C . et al. In search of the Earth-forming reservoir: mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites. Meteorit. Planet. Sci. 52, 807–826 (2017)

    ADS  CAS  Google Scholar 

  7. 7

    Bollard, J . et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Ciesla, F. J. Radial transport in the solar nebula: implications for moderately volatile element depletions in chondritic meteorites. Meteorit. Planet. Sci. 43, 639–655 (2008)

    ADS  CAS  Google Scholar 

  9. 9

    Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012)

    ADS  Google Scholar 

  10. 10

    Johansen, A ., Mac Low, M. M ., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Dauphas, N . et al. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96–108 (2014)

    ADS  CAS  Google Scholar 

  12. 12

    Currie, T. & Sicilia-Aguilar, A. The transitional protoplanetary disk frequency as a function of age: disk evolution in the Coronet Cluster, Taurus, and other 1–8 Myr old regions. Astrophys. J. 732, 24 (2011)

    ADS  Google Scholar 

  13. 13

    McSween, H. Y . et al. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2090–2104 (2013)

    ADS  CAS  Google Scholar 

  14. 14

    Wang, H . et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017)

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Schiller, M ., Baker, J. A. & Bizzarro, M. 26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochim. Cosmochim. Acta 74, 4844–4864 (2010)

    ADS  CAS  Google Scholar 

  16. 16

    Keil, K. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chem. Erde 72, 191–218 (2012)

    CAS  Google Scholar 

  17. 17

    Macke, R. J ., Britt, D. T. & Consolmagno, G. J. Density, porosity, and magnetic susceptibility of achondritic meteorites. Meteorit. Planet. Sci. 46, 311–326 (2011)

    ADS  CAS  Google Scholar 

  18. 18

    Wilson, L ., Goodrich, C. A. & Van Orman, J. A. Thermal evolution and physics of melt extraction on the ureilite parent body. Geochim. Cosmochim. Acta 72, 6154–6176 (2008)

    ADS  CAS  Google Scholar 

  19. 19

    Wilson, L. & Keil, K. Volcanic activity on differentiated asteroids: a review and analysis. Chem. Erde 72, 289–321 (2012)

    CAS  Google Scholar 

  20. 20

    Schiller, M . et al. Rapid timescales for magma ocean crystallization on the howardite–eucrite–diogenite parent body. Astrophys. J. Lett. 740, L22 (2011)

    ADS  Google Scholar 

  21. 21

    Schiller, M ., Connelly, J. N ., Glad, A. C ., Mikouchi, T. & Bizzarro, M. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet. Sci. Lett. 420, 45–54 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Bollard, J ., Connelly, J. N. & Bizzarro, M. Pb–Pb dating of individual chondrules from the CBa chondrite Gujba: assessment of the impact plume formation model. Meteorit. Planet. Sci. 50, 1197–1216 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011)

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Hartmann, L ., Herczeg, G. & Calvet, N. Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016)

    ADS  CAS  Google Scholar 

  25. 25

    Kruijer, T. S ., Burkhardt, C ., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017)

    ADS  CAS  PubMed  Google Scholar 

  26. 26

    Picogna, G. & Kley, W. How do giant planetary cores shape the dust disk? HL Tauri system. Astron. Astrophys. 584, A110 (2015)

    ADS  Google Scholar 

  27. 27

    Carrasco-González, C . et al. The VLA view of the HL Tau disk: disk mass, grain evolution, and early planet formation. Astrophys. J. Lett. 821, L16 (2016)

    ADS  Google Scholar 

  28. 28

    Hartmann, W. K. & Davis, D. R. Satellite-sized planetesimals and lunar origin. Icarus 24, 504–515 (1975)

    ADS  Google Scholar 

  29. 29

    Canup, R. M. Lunar-forming impacts: processes and alternatives. Phil. Trans. R. Soc. A 372, 20130175 (2014)

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    C´uk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012)

    ADS  Google Scholar 

  32. 32

    Meier, M. M. M ., Reufer, A. & Wieler, R. On the origin and composition of Theia: constraints from new models of the Giant Impact. Icarus 242, 316–328 (2014)

    ADS  CAS  Google Scholar 

  33. 33

    Kleine, T . et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    ADS  CAS  Google Scholar 

  34. 34

    Schiller, M., Paton, C. & Bizzarro, M. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS. J. Anal. At. Spectrom. 27, 38–49 (2012)

    CAS  Google Scholar 

  35. 35

    Larsen, K. K. et al. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. Lett. 735, L37 (2011)

    ADS  Google Scholar 

  36. 36

    van Kooten, E. M., Schiller, M. & Bizzarro, M. Magnesium and chromium isotope evidence for initial melting by radioactive decay of 26Al and late stage impact-melting of the ureilite parent body. Geochim. Cosmochim. Acta 208, 1–23 (2017)

    ADS  CAS  Google Scholar 

  37. 37

    Baker, J. A., Schiller, M. & Bizzarro, M. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System? Geochim. Cosmochim. Acta 77, 415–431 (2012)

    ADS  CAS  Google Scholar 

  38. 38

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012)

    ADS  CAS  PubMed  Google Scholar 

  39. 39

    Estrada, P. R., Cuzzi, J. N. & Morgan, D. A. Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. Methodology and typical results. Astrophys. J. 818, 200 (2016)

    ADS  Google Scholar 

  40. 40

    Sugiura, N. & Fujiya, W. Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci. 49, 772–787 (2014)

    ADS  CAS  Google Scholar 

  41. 41

    Gussone, N. et al. Calcium isotope fractionation in calcite and aragonite. Geochim. Cosmochim. Acta 69, 4485–4494 (2005)

    ADS  CAS  Google Scholar 

  42. 42

    Ewing, S. A. et al. Non-biological fractionation of stable Ca isotopes in soils of the Atacama Desert, Chile. Geochim. Cosmochim. Acta 72, 1096–1110 (2008)

    ADS  CAS  Google Scholar 

  43. 43

    Valdes, M. C., Moreira, M., Foriel, J. & Moynier, F. The nature of Earth’s building blocks as revealed by calcium isotopes. Earth Planet. Sci. Lett. 394, 135–145 (2014)

    ADS  CAS  Google Scholar 

  44. 44

    Amsellem, E. et al. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth Planet. Sci. Lett. 469, 75–83 (2017); corrigendum 474 527 (2017)

    ADS  CAS  Google Scholar 

  45. 45

    Magna, T., Gussone, N. & Mezger, K. The calcium isotope systematics of Mars. Earth Planet. Sci. Lett. 430, 86–94 (2015)

    ADS  CAS  Google Scholar 

  46. 46

    Tang, H. & Dauphas, N. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359360, 248–263 (2012)

    ADS  Google Scholar 

  47. 47

    Tang, H. & Dauphas, N. 60Fe–60Ni chronology of core formation in Mars. Earth Planet. Sci. Lett. 390, 264–274 (2014)

    ADS  CAS  Google Scholar 

  48. 48

    Zhang, J., Dauphas, N., Davis, A. M. & Pourmand, A. A new method for MC-ICPMS measurement of titanium isotopic composition: identification of correlated isotope anomalies in meteorites. J. Anal. At. Spectrom. 26, 2197–2205 (2011)

    CAS  Google Scholar 

  49. 49

    Trinquier, A., Birck, J. L. & Allegre, C. J. Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655, 1179–1185 (2007)

    ADS  CAS  Google Scholar 

  50. 50

    Yamakawa, A., Yamashita, K., Makishima, A. & Nakamura, E. Chromium isotope systematics of achondrites: chronology and isotopic heterogeneity of the inner solar system bodies. Astrophys. J. 720, 150–154 (2010)

    ADS  CAS  Google Scholar 

  51. 51

    Qin, L., Alexander, C. M. D., Carlson, R. W., Horan, M. F. & Yokoyama, T. Contributors to chromium isotope variation of meteorites. Geochim. Cosmochim. Acta 74, 1122–1145 (2010)

    ADS  CAS  Google Scholar 

  52. 52

    Carlson, R. W., Boyet, M. & Horan, M. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early earth differentiation. Science 316, 1175–1178 (2007)

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    Boyet, M. & Carlson, R. W. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    ADS  CAS  PubMed  Google Scholar 

  54. 54

    Borg, L. E., Brennecka, G. A. & Symes, S. J. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 175, 150–167 (2016)

    ADS  CAS  Google Scholar 

  55. 55

    Moynier, F. et al. Planetary-scale strontium isotopic heterogeneity and the age of volatile depletion of early Solar System materials. Astrophys. J. 758, 45 (2012)

    ADS  Google Scholar 

  56. 56

    Paton, C., Schiller, M. & Bizzarro, M. Identification of an 84Sr-depleted carrier in primitive meteorites and implications for thermal processing in the solar protoplanetary disk. Astrophys. J. 763, L40 (2013)

    ADS  Google Scholar 

  57. 57

    Hans, U., Kleine, T. & Bourdon, B. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth Planet. Sci. Lett. 374, 204–214 (2013)

    ADS  CAS  Google Scholar 

  58. 58

    Clayton, N. R. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    ADS  CAS  Google Scholar 

  59. 59

    Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S. & Kleine, T. Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168, 151–171 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided to M.B. by the Danish National Research Foundation (DNRF97) and the European Research Council (ERC Consolidator Grant Agreement 616027—STARDUST2ASTEROIDS). V.A.F. acknowledges financial support from a DFG-Eigenstelle FE 1523/3-1 and the Royal Society for the purchase of Dhofar 287. We thank Å. Nordlund, A. Johansen and F. Moynier for discussion on the paper, as well as J. Day for comments that helped improve the quality of our paper.

Author information

Affiliations

Authors

Contributions

M.S. and M.B. designed the study and experiments. M.S. conducted the analytical work. All authors participated in the interpretation of the data. M.S. and M.B wrote the manuscript with input from V.A.F.

Corresponding author

Correspondence to Martin Schiller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks J. Day and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 μ48Ca values of planetary bodies versus mass for different masses of the ureilite parent body and Earth’s precursor.

ac, Regressions (solid lines) and associated correlation coefficients through the data (squares) by assuming an ureilite parent body with a radius of 50 km and masses of MEarth, 0.5MEarth and 0.25MEarth for Earth’s precursor. df, Regressions through the data but assuming a ureilite parent body with a radius of 105 km and masses of MEarth, 0.5MEarth and 0.25MEarth for Earth’s precursor. The masses for the angrite parent body, Vesta and Mars are the same as in Fig. 2a.

Source data

Extended Data Figure 2 Three-isotope plot of the average δ42/44Ca versus δ43/44Ca for Earth, meteorite parent bodies and chondrite groups relative to the standard SRM 915b.

The solid line shows the mass-dependent fractionation predicted by kinetic mass fractionation. Uncertainties shown for δ42/44Ca and δ43/44Ca are two times the standard error of the mean per group of analysed samples. For groups containing a single sample (ordinary chondrites, CI, CM and C2-ung), the error represents either the external reproducibility (0.05 and 0.03 for δ42/44Ca and δ43/44Ca, respectively) or the analytical uncertainty of the measurement; whichever is larger.

Source data

Extended Data Figure 3 Comparison of δ42/44Ca values with previous results.

Data for ordinary chondrites and martian, lunar and terrestrial basalts43,44,45 are compared with those determined in this study. Uncertainties shown are two standard errors of the mean.

Source data

Extended Data Figure 4 Comparison of μ48Ca values determined for desert and non-desert finds or falls.

Data are shown for martian (a), angrite (b) and ureilite (c) meteorites. The grey shaded area indicates the external reproducibility of individual sample analyses. Uncertainties shown are two standard errors of the mean.

Source data

Extended Data Figure 5 Correlation between parent-body mass and nucleosynthetic anomalies for 50Ti, 54Cr, 62Ni and 145Nd.

The data are from refs 1, 2, 6, 46, 47, 48, 49, 50, 51, 52, 53, 54. The masses are shown relative to the mass of Earth, MEarth. Arrows indicate the effects of mixing CI-like matter with the inner-disk reservoir on the isotope composition, as predicted on the basis of measured nucleosynthetic signatures of CI chondrites. Error bars indicate the 95% confidence level of the mean.

Source data

Extended Data Table 1 Mass-independent μ48Ca values and mass-dependent δ42/44Ca and δ43/44Ca data relative to SRM 915b

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiller, M., Bizzarro, M. & Fernandes, V. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018). https://doi.org/10.1038/nature25990

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links