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Analysis of molecular aberrations across multiple cancer types, 
known as pan-cancer analysis, identifies commonalities and 
differences in key biological processes that are dysregulated in 
cancer cells from diverse lineages. Pan-cancer analyses have been 
performed for adult1–4 but not paediatric cancers, which commonly 
occur in developing mesodermic rather than adult epithelial tissues5. 
Here we present a pan-cancer study of somatic alterations, including 
single nucleotide variants, small insertions or deletions, structural 
variations, copy number alterations, gene fusions and internal 
tandem duplications in 1,699 paediatric leukaemias and solid 
tumours across six histotypes, with whole-genome, whole-exome 
and transcriptome sequencing data processed under a uniform 
analytical framework. We report 142 driver genes in paediatric 
cancers, of which only 45% match those found in adult pan-cancer 
studies; copy number alterations and structural variants constituted 
the majority (62%) of events. Eleven genome-wide mutational 
signatures were identified, including one attributed to ultraviolet-
light exposure in eight aneuploid leukaemias. Transcription of the 
mutant allele was detectable for 34% of protein-coding mutations, 
and 20% exhibited allele-specific expression. These data provide 
a comprehensive genomic architecture for paediatric cancers and 
emphasize the need for paediatric cancer-specific development of 
precision therapies.

Paired tumour and normal samples from 1,699 patients with 
 paediatric cancers enrolled in Children’s Oncology Group clinical trials 
were analysed, including 689 B-lineage acute lymphoblastic  leukaemias 
(B-ALL), 267 T-lineage ALLs (T-ALL), 210 acute myeloid  leukaemias 
(AML), 316 neuroblastomas (NBL), 128 Wilms tumours and 89 
 osteosarcomas (Extended Data Fig. 1a–c). All tumour  specimens were 
obtained at initial diagnosis, and 98.5% of patients were 20 years of age 
or younger (see Methods, Extended Data Fig. 1d).

The median somatic mutation rate ranged from 0.17 per million 
bases (Mb) in AML and Wilms tumours to 0.79 in osteosarcomas  
(Fig. 1a, b), lower than the 1–10 per Mb found in common adult 
 cancers6. Genome-wide analysis (see Methods) identified 11 muta-
tional signatures (T-1 through T-11; Fig. 1c–e and Supplementary  
Table 1a–c). Signatures T-1 through T-9 corresponded to known 
COSMIC signatures7, whereas T-10 and T-11 were novel but enriched 
in mutations with a low (< 0.3) mutant allele fraction (MAF).

Signatures T-1 and T-4 (clock-like endogenous mutational processes) 
were present in all samples and contributed to large proportions of all 
mutations in T-ALL (97%), AML (63%), B-ALL (36%), and Wilms 
tumours (28%). T-2 and T-7 (APOBEC (apolipoprotein B mRNA 
editing enzyme, catalytic polypeptide-like)) were highly enriched in 
B-ALLs with ETV6-RUNX1 fusions (15-fold and 9-fold enrichment for 
T-2 and T-7, respectively; Supplementary Table 1e). T-3 (homologous 
recombination deficiency) was present in many childhood cancers, 
including osteosarcomas (18 of 19), NBLs (59 of 137), Wilms tumours 
(28 of 81), and B-ALL (47 of 218). T-8 (8-oxoguanine DNA damage) 
was present in a small proportion (4.5–12%) of AML, B-ALL, osteosar-
coma, and Wilms tumour samples. T-8 was also present in many (36%) 
NBL samples and was associated with age at diagnosis (Supplementary 
Table 1d). T-9 (DNA repair deficiency) was present in two B-ALLs, 
including one (sample PARJSR) with a somatic MSH6 frameshift 
 mutation. T-2, T-3, T-5, T-7, T-8, and T-9 were enriched among the 
39 samples with elevated mutation rates in each histotype (Fig. 1d).

The T-5 ultraviolet-light (UV)-exposure signature was unexpectedly 
present in eight B-ALL samples (Extended Data Fig. 2a–c). Although 
its mutation rate in B-ALL, ranging from 0.06 to 0.72 per Mb, was 100-
fold lower than the average rate in adult (15.8 per Mb)8 and paediatric 
(14.4 per Mb)9 skin cancer, T-5 exhibited other features associated with 
UV-related DNA damage. Specifically, CC> TT dinucleotide muta-
tions were enriched 110-fold in these eight B-ALL samples when com-
pared with other samples (P =  1.07 ×  10−7), which is consistent with 
 pyrimidine dimer formation. Moreover, transcriptional strand bias in 
T-5  indicated that photodimer formation contributed to cytosine dam-
age. The  validity of T-5 was further confirmed by analysis of the muta-
tion clonality, cross-platform concordance, genomic distribution and 
mutation spectrum of each sample (see Methods, Extended Data Fig. 
2d–i), indicating that UV exposure or other mutational processes10,11 
may contribute to paediatric leukemogenesis. Notably, all T-5 B-ALLs 
had aneuploid genomes (P =  3 ×  10−5; two-sided binomial test; cohort 
 frequency 24%) without any oncogenic fusions.

By analysing the enrichment12,13 of somatic alterations within each 
histotype or the pan-cancer cohort (see Methods), we identified 142 
significantly mutated driver genes (Fig. 2a, Supplementary Table 2, 
Extended Data Fig. 3a). Somatic alterations in CDKN2A, which were 
predominantly deletions, occurred at the highest frequency, affecting 
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207 of 267 (78%) T-ALLs, 91 of 218 (42%) B-ALLs and 2 of 19 (11%) 
osteosarcomas (Extended Data Fig. 3b). More than half (73) of the 
driver genes were specific to a single histotype, such as TAL1 for T-ALL 
and ALK for NBL (Extended Data Fig. 3c). Genes that were mutated in 
both leukaemias and the three solid tumour histotypes accounted for 
only 17% of driver genes (Extended Data Fig. 3e), of which some genes 
had various types of somatic alteration. For example, STAG2, a known 
driver gene for Ewing’s sarcoma14 and adult AML15, exhibited five  
different types of somatic alteration (single nucleotide variants (SNVs), 
small insertions or deletions (indels), copy number alterations (CNAs), 
structural variants and internal tandem duplications (ITDs)) across 
five histotypes (Extended Data Fig. 4a–d). Nine STAG2 variants were  
predicted to cause protein truncation, including four predicted by 
aberrant transcripts in RNA sequencing (RNA-seq). Notably, 78 of 142 
driver genes (Supplementary Table 2) were not found in adult pan- 
cancer studies1–4, and 43 (Fig. 2a and Extended Data Fig. 3a) were not 
found in the Cancer Gene Census (v81)16. Thirty-seven were absent 
from both sources, although mutations in cancer have been reported 
for 29 of these genes, such as NIPBL17–19 and LEMD320 (Extended Data 
Fig. 4p, q). Nearly half (40–50%) of point mutations in leukaemia and 
NBL driver genes had low MAFs (< 0.3), indicative of subclonal muta-
tions contributing to tumorigenesis (Extended Data Fig. 3f).

Three hundred and four gene-pairs exhibited statistically significant 
(P <  0.05, two-sided Fisher’s exact test; Fig. 2b, Supplementary Table 3)  
co-occurrence (for example, USP7 and TAL1 in T-ALL21) or mutual 
exclusivity (for example, MYCN and ATRX in NBL22). The analysis 
also unveiled novel co-occurrences (for example, ETV6 and IKZF1  
in AML and CREBBP and EP300 in B-ALL) and mutual exclusivi-
ties (for example, SHANK2 and MYCN in NBL and PAX5 and TP53  
in B-ALL).

Because of reduced power for detecting low-frequency drivers2 
(detection limits were 1% for the entire cohort and 3% for individual  
histotypes with more than 200 samples; Extended Data Fig. 5 
and Methods), we performed subnetwork analyses3 and variant 
 pathogenicity classification23 (see Methods), identifying 184 variants 
in 82 additional genes (Supplementary Table 4 and Extended Data  
Fig. 4e, f). A notable example is the MAP3K4 G1366R mutation, 
which was found in one T-ALL, two B-ALLs, and one Wilms tumour. 
MAP3K4 is a member of the MAPK family24 and structural model-
ling indicates that the G1366R mutation is likely to cause disruption of 
normal inhibitory domain binding and kinase dynamics24 (Extended 
Data Fig. 4l, m). Several genes in which structural variants were found 
(PDGFRA, CDK4, YAP1, UBTF) are listed in Extended Data Fig. 4.

While the percentage of tumours with point mutations in driver 
genes was highly consistent between whole-genome sequencing (WGS) 
and whole-exome sequencing (WES) (Fig. 3a), WGS makes it possible 
to detect CNAs and structural variants, which are frequently driver 
events for paediatric cancers. For example, 72% of NBL tumours ana-
lysed by WGS had at least one driver variant compared to 26% of those 
analysed by WES (Fig. 3a and Extended Data Fig. 4j, k). Furthermore, 
integrative analyses of CNAs and structural variants with WGS data 
revealed chromothripsis (that is, massive rearrangements caused by a 
single catastrophic event) in 11% of all samples (13 in osteosarcomas, 
15 in Wilms tumours, 22 in NBL, 14 in B-ALL, and 6 in AML; Extended 
Data Fig. 1f). We next performed pathway analyses (see Methods) on 
654 samples analysed by WGS and 264 T-ALL samples analysed by both 
WES and single nucleotide polymorphism (SNP) arrays, totaling 682 
leukaemias and 236 solid tumours.

The 21 biological pathways that were disrupted by driver alterations 
were either common (for example, cell cycle and epigenetic regulation) 
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Figure 1 | Somatic mutation rate and signature. Sample size of each 
histotype is shown in parentheses. Mutation rate using non-coding SNVs 
from WGS (a) and coding SNVs from WGS and WES (b). Red line, 
median. a and b are scaled to the total number of samples with WGS 
(n =  651), WGS or WES (n =  1,639), respectively. c, Mutational signatures 

identified from WGS and T-ALL WES data and their contribution in 
each histotype. d, Mutation spectrum of representative samples in each 
histotype. Hypermutators (three s.d. above mean rate of corresponding 
histotype) are labelled with an asterisk. e, Mean and s.d. of MAF of each 
signature in each histotype.
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or histotype-specific (for example, JAK–STAT, Wnt/β -catenin, and 
NOTCH signalling) (Fig. 3b). More importantly, the genes that were 
mutated in each pathway differed between histotypes. One  example 
is signalling pathways such as RAS, JAK–STAT and PI3K (Fig. 3c).  
For genes in these pathways, somatic alterations in solid tumours 
 primarily occurred in ALK, NF1, and PTEN, whereas nearly all 
mutations in FLT3, PIK3CA, PIK3R1, and RAS were found in leukae-
mias. Although many biological processes are dysregulated in both 
paediatric and adult cancers1,2,4, the affected genes may be either 
 paediatric-specific (for example, transcription factors and JAK–STAT 
pathway genes) or common to both (for example, cell cycle genes  
and epigenetic modifiers). Notably, two novel KRAS isoforms were 
detected in 70% of leukaemias but rarely in solid tumours (Extended 
Data Fig. 6).

Evaluation of mutant allele expression makes it possible to assess the 
effects on the gene product and to detect potential epigenetic regu lation 

that may cause allelic imbalance. Here we present this analysis on 6,959 
coding mutations with matching WGS and RNA-seq data. RNA-seq 
expression clusters confirmed the tissue of origin of each histotype 
(Extended Data Fig. 7). Mutant alleles were expressed for 34% of these 
mutations, which is consistent with previous reports25–27. The expres-
sion of mutant alleles is generally associated with corresponding DNA 
MAF and the expression levels of host genes (Fig. 4a); however, excep-
tions can be found due to X-inactivation, imprinting, nonsense-me-
diated decay or complex structural re-arrangements (Extended Data 
Fig. 8a).

Allele-specific expression (ASE) was evaluated for 2,477 somatic 
point mutations with sufficient read-depth in DNA and RNA-seq (see 
Methods). Of 486 candidate ASE mutations (Supplementary Table 5), 
279 had no detectable expression of the mutant allele, and a comparable 
DNA MAF distribution was found for truncating and non-truncating 
mutations (P =  0.5, two-sided Wilcoxon rank-sum test, Extended Data  
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Figure 2 | Candidate driver genes in paediatric cancer. a, Top 100 
recurrently mutated genes: case count for each histotype is shown in 
the same colour as the legend. Asterisk indicates gene not reported in 
prior adult pan-cancer analyses. b, Statistically significant pairwise 
relationships (P <  0.05; two-sided Fisher’s exact test) for co-occurrence 

(red) or exclusivity (blue) in each histotype. Gene pairs with Q <  0.05 are 
coloured dark red (co-occurring) or dark blue (exclusive) to account for 
false discovery rate. Significance detected only in WGS +  WES samples 
is marked with an asterisk. Shown in parentheses are number of mutated 
samples.
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Fig. 8b). Of the remaining 207 candidate ASE mutations, 76% of 
truncating mutations exhibited suppression of the mutant allele 
(P =  7 ×  10−5; two-sided binomial test), while 87% of hotspot muta-
tions showed the opposite trend of elevated expression (P =  6 ×  10−5; 
two-sided binomial test; Fig. 4b, Extended Data Fig. 8c). Excluding 
hotspot mutations resulted in equal distribution of suppression versus 
elevation (66 versus 55) for the remaining 121 non-truncating ASE 
mutations (P =  0.4; two-sided binomial test).

Subclonal loss-of-heterozygosity (LOH) in tumours is a confounding  
factor for ASE analysis. For example, significant allelic imbalance 
between tumour DNA and RNA MAF of WT1 D447N in an AML that 
also harboured a subclonal 11p copy-neutral LOH (Fig. 4c) could be 
attributed to ASE or WT1 expression of a subclone with a  double-hit 
of D447N mutation and 11p LOH. To address this, we performed 
single-cell DNA sequencing on 63 germline variants on 11p and the 
somatic point mutations. We confirmed ASE by establishing that WT1 
D447N and 11p LOH occurred in separate subclones (Fig. 4c and 
Extended Data Fig. 9a, b). The resulting genotype data projected that 

one WT1 allele was silenced in a common ancestor and the other was 
lost in the three descendant subclones by 11p LOH, acquisition of the 
WT1 D447N mutation, or focal deletion. Two additional AMLs with 
WT1 D447N also exhibited ASE (Extended Data Fig. 9c),  implying 
that loss of WT1 expression by epigenetic silencing or mutations 
in cis- regulatory elements is not rare in AML. Similarly, single-cell 
 sequencing of an ALL sample confirmed ASE of a JAK2 hotspot muta-
tion (Extended Data Fig. 9d).

The somatic variants used for this study are available at the National 
Cancer Institute TARGET Data Matrix and our ProteinPaint28 
 portal, which provides an interactive heat map viewer for exploring 
 mutations, genes, and pathways across the six histotypes (Extended 
Data Fig. 10). The portal also hosts the somatic variants analysed by the 
 companion paediatric pan-cancer study of 961 tumours from 24 histo-
types,  including 559 central nervous system tumours29. We anticipate 
that these complementary pan-cancer datasets will be an important 
resource for investigations of functional validation and implementation 
of clinical genomics for paediatric cancers.
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Figure 3 | Biological processes with somatic alterations in paediatric 
cancer. a, Percentage of tumours with at least one driver alteration 
are shown for each histotype. WGS-analysed tumours may have point 
mutations (light grey), CNAs or structural variations (SV) (dark grey),  
or both (black). For T-ALL, CNAs were derived from SNP array.  
b, Percentage of tumours within each histotype that have somatic 

alterations in 21 biological pathways; histotype ordering is as in a.  
The coloured portion of each pathway indicates the percentage of  
variants in genes that are absent in three TCGA pan-cancer studies.  
c, Mutation occurrence by histotype in RAS, tyrosine kinase, and  
PI3K pathways.
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Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MEthOdS
Patient samples. Specimens were obtained through collaborations with the 
Children’s Oncology Group (COG) and the Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET) project. Institutional review boards 
from the following institutions were responsible for oversight: Ann & Robert H. 
Lurie Children’s Hospital, Fred Hutchinson Cancer Research Center, National 
Cancer Institute, St Jude’s Children’s Research Hospital, The Children’s Hospital 
of Philadelphia, The University of New Mexico, Texas Children’s Hospital, and The 
Hospital for Sick Children. In our cohort, osteosarcoma has a higher percentage 
of older patients because the age of onset has a bimodal distribution: the first peak 
occurs among adolescents and young adults, and the second (associated with Paget 
disease and with a different underlying biology30) occurs among the elderly. We 
used an age cutoff of 40 years, which is typical for COG-conducted osteosarcoma 
trials31. Informed consent was obtained from all subjects.
Genomic datasets. WGS, WES, and RNA-seq data were downloaded from dbGaP 
with study identifier phs000218 (including phs000463, phs000464, phs000465, 
phs000467, phs000471, and phs000468). Among the 1,699 cases analysed, 45 
B-ALLs32,33, 197 AMLs34, 264 T-ALLs21, 240 NBLs35 and 115 Wilms tumours36 
have been included in published studies of individual histotypes. No statistical 
methods were used to predetermine sample size. The experiments were not 
 randomized. The investigators were not blinded to allocation during experiments 
and outcome assessment.
WGS data analysis. WGS data were generated with Complete Genomics Inc. (CGI) 
technology with an average genome-wide coverage of 50×  using 31- to 35-bp 
mate-paired reads, which was powered for detecting mutations in 94% of mappable 
exonic regions37,38. Read pairs were mapped to hg19/GRCh37, and somatic SNVs, 
indels, and structural variants were analysed by comparing paired tumour and 
normal genomes using the CGI Cancer Sequencing service pipeline version 238,39.

For each case, we downloaded CGI-generated WGS files for somatic SNVs, 
indels, structural variants, and CNAs from the TARGET Data Matrix as the starting 
point for our analysis.
Filtering of point mutations. Putative somatic point mutations including SNVs 
and indels were extracted from Mutation Annotation Format files and run through 
a filter to remove false-positive calls. First, germline variants were filtered by using: 
(1) NLHBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS/);  
(2) dbSNP (build 132); (3) St Jude/Washington University Paediatric Cancer 
Genome Project (PCGP); and (4) germline variants present in five or more 
TARGET CGI WGS cases in each cohort. Second, a variant was removed unless 
it met the following criteria: (1) at least three reads supported the mutant allele 
in the tumour; (2) the mutant read count in the tumour was significantly higher 
than normal (P <  0.01 by two-sided Fisher’s exact test); and (3) the normal MAF 
was below 0.05. Finally, a BLAT search40 was run on the mutant allele with 20-bp 
flanking to verify unique mapping.

A ‘rescue’ pipeline was implemented to avoid over-filtering, by using the 
customized AnnoVar annotation and pathogenicity identification tool Medal_
Ceremony23 (M.N.E. et al., unpublished). Pathogenic variants were rescued and 
further curated with ProteinPaint28.

This filtering has reduced the original 51 million SNVs and 38 million 
indels from the CGI files to a set of 711,490 SNVs and 57,700 indels. Of these, 
9,397 SNVs and 1,000 indels are in protein coding regions. A comparison with  
gnomAD database (version r2.0.1; http://gnomad.broadinstitute.org/) indicated 
that 1.1% of our detected SNVs overlap with SNPs with population frequency 
greater than 0.1%. Verification of somatic point mutations after filtering is  
presented in Supplementary Note 1.
Filtering of structural variation. CGI structural variants were filtered to remove 
germline rearrangements, including those found in the Database of Genomic 
Variants, dbSNP, PCGP, recurrent germline rearrangements from CGI Mutation 
Annotation Format files, low-confidence somatic calls (> 90% reference similarity 
to the assembled sequence) and those with both structural variant breakpoints 
falling into gap regions (hg19). Each structural variant was required to have an 
assembled contig length of at least 10 bp on each breakpoint. CNAs in each tumour 
were integrated into the structural variant analysis by matching breakpoints within 
a 5-kb window to rescue rearrangements with CNA support by manual curation.  
A comparison of CGI structural variants with the known oncogenic re- arrangement  
in AML and B-ALL is presented in Supplementary Note 2.
Copy number alterations. We adapted the CONSERTING algorithm41 to detect 
CNAs from CGI WGS data. In brief, germline single nucleotide polymorphisms 
(SNPs) reported by CGI in Mutation Annotation Format files were extracted, and 
paralogous variants identified from 625 germline WGS cases generated by PCGP 
were removed. A coverage profile was constructed using the mean of SNP read 
counts within a sliding window of 100 bp, and the differences between tumour 
and normal samples were used as inputs for CONSERTING. To detect LOH, we 
used SNPs with variant allele fraction (VAF) in normal sample within an interval 

of (0.4, 0.6) and > 15×  coverage in tumour and normal samples. Allelic  imbalance 
(AI; | Tumour_VAF-0.5| ) was used to detect LOH. Regions with concomitant copy 
 number changes (| log ratio| > 0.2) or LOH (AI > 0.1) were subjected to manual 
review. Finally, regions less than 2 Mb were considered focal and included in 
the GRIN12 analysis to determine the significance of the somatic alterations. 
A  comparison of our CNA detection with clinical information is provided in 
Supplementary Note 3.

For osteosarcomas, manual reviews of candidate genes affected by CNA were 
prioritized for the following three groups owing to the high number of rearrange-
ments caused by chromothripsis in this histotype42: (1) gene expression change 
matched the CNA status; (2) genes with recurrent loss and gain; and (3)  published 
osteosarcoma driver genes42. This resulted in the discovery of 13 focal CNAs 
 affecting CCNE1, CDKN2A, RB1, PTEN, TUSC7, and YAP1 in addition to TP53.
WES data analysis. Of the 1,131 tumour-normal WES pairs, all but 23 osteosar-
coma pairs exhibited the expected binomial distribution of B-allele  fraction for 
germline SNPs. The 23 outlier samples were therefore used neither for the discov-
ery of driver genes nor for calculating mutation rate in coding regions (Fig. 1b).  
They were included only for determining driver mutation prevalence.

Somatic SNVs and indels were detected by the Bambino43 program, followed 
by postprocessing and manual curation as previously described44,45. To address 
8-oxo-G artefacts35, we implemented the D-ToxoG filtering algorithm46.
Somatic mutation rate. The median mutation rate of 651 CGI WGS samples (Fig. 1a)  
was calculated from tier3 non-coding SNVs47. This analysis did not include the 
T-ALL cohort as only three T-ALLs were analysed by the CGI platform. Mutations 
in coding regions were based on coding SNVs from 1,639 samples analysed by 
WGS or WES (Fig. 1b). Among these, 120 samples were analysed by both WGS 
and WES, and the union of coding SNVs from WGS and WES were used. Twenty-
three osteosarcoma WES samples were excluded from coding mutation analysis 
owing to quality issues described in ‘WES data analysis’. For osteosarcomas, the 
mutation rate in coding regions (0.53 per Mb) is lower than in non-coding regions 
(0.79 per Mb). Nineteen osteosarcoma samples were analysed by both CGI and 
WES. For these samples, the mutation rate in coding regions derived from either 
CGI or WES was 0.54 per Mb while the mutation rate in the non-coding regions 
was 0.79 per Mb, indicating a potential contribution of kataegis42 in the elevated 
mutation rate in non-coding regions. Within each histotype, hypermutators were 
defined as having mutation rates 3 s.d. above the mean (trimming 5% outliers).
Mutational signature analysis. Mutational catalogues were generated for 
each sample by using a 96-bin classification (Supplementary Table 1b). These 
were examined for all samples with our previously established methodology48 
to  decipher mutational signatures and to quantify their activities in individual 
 samples. The correlation between age of diagnosis and mutational signature 
 activities was computed by using robust regression49. We also compared the cosine 
similarity between original and reconstructed samples and found that samples with 
more than 100 mutations had cosine similarities greater than 0.85, whereas samples 
with less than 100 mutations mostly (93.5%) had cosine similarities less than 0.85.

To calculate the average MAF values for each signature (Fig. 1e), each of the 
96 mutation types was assigned to the signature with the highest probability (the 
same result was obtained if we required the highest probability to be higher than 
the second (by Δ  =  0.05, 0.1, and 0.2; data not shown). This assignment was also 
used for Extended Data Fig. 2e–i.

The two novel signatures, T-10 and T-11, were enriched in low MAF mutations. 
T-11 was the only signature that was significantly correlated (r2 =  0.9) with the 
presence of multi-nucleotide variations composed of co-occurring SNVs separated 
by 3 or 4 bp which were not verified by Illumina WES. Therefore, it is likely to be 
associated with platform-specific sequencing artefacts.

For the eight B-ALL cases identified with mutation signatures of UV-light 
 exposure, only 0.96% of the somatic SNVs overlap with SNPs that have population 
allele frequencies (AFs) > 0.1% in the gnomAD database (version r2.0.1; http://
gnomad.broadinstitute.org/). The overlap is only 0.22% if using AF > 1%. The 
overlap rate is comparable to the 1.1% observed for non-UV somatic SNVs across 
the entire cohort (0.27% match if using AF > 1%).

For each of these eight B-ALL cases, UV- and non-UV-mutations were strati-
fied according to the ploidy of their genomic locations (Extended Data Fig. 2e–g; 
cluster centres estimated using R package mclust). Inter-mutational distances were 
plotted for comparison of genomic distribution of UV- versus non-UV mutations. 
Chromosomal ploidy and tumour purity were obtained from TARGET clinical 
files and prior publications50. By adjusting for ploidy and corresponding tumour 
purity, we calculated expected MAFs for clonal mutations as follows: denoting 
the tumour purity as π, the expected MAF for clonal mutations was π/(2 −  π) in 
the 1-copy loss region, π/2 in the diploid region, and π/(2 +  π) in the 1-copy gain 
(wild-type allele) region.

Age-specific incidence rates for childhood ALL reported by the Surveillance, 
Epidemiology, and End Results (SEER) program show that the rate of incidence 
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in African American children is half of that in white children (Extended Data  
Fig. 2h). While none of our eight patients is African American according to clinical 
information and genomic imputation, we were not able to test the significance of 
this observation as 6.6% of the children enrolled in the COG ALL trial are African 
American.
Chromothripsis analysis. To detect chromothripsis, we first assessed whether the 
distribution of structural variant breakpoints in each tumour departed from the 
null hypothesis of random distribution using Bartlett’s goodness-of-fit test42. The 
distribution of structural variant types (deletion, tandem duplication, head-to-
head and tail-to-tail rearrangements) was also evaluated using a goodness-of-fit 
test for chromosomes with a minimum of five structural variants. Chromosomes 
with P <  0.01 for Bartlett’s test and with P >  0.01 for the structural variant type test 
were further reviewed for oscillation between restricted CNA states.
Discovery of candidate driver genes. For the 654 CGI samples, we ran GRIN12 
analysis with all somatic variants (structural variants, CNAs, SNVs and indels) 
for both individual histotypes and a combined pan-cancer cohort. Similarly, 
we  combined coding SNVs and indels identified in both WGS and WES for 
MutSigCV13. Putative genes with Q <  0.01 by GRIN or MutSigCV were subjected 
to additional curation to determine their driver status. Only one candidate gene 
was included in this analysis for somatic alterations affecting multiple genes such 
as fusion pairs (Supplementary Note 4).

We discovered 142 candidate driver genes by this approach (Supplementary 
Table 2). Of these, 133 were significant by GRIN analysis (87 genes common to 
both GRIN and MutSigCV) and nine were significant only by MutSigCV.
HotNet2 analysis. We applied HotNet23 to somatic mutations using interaction 
data obtained from the HINT, HI2014, and KEGG databases. We reviewed all 
predicted sub-networks and identified the cohesin complex with three additional 
genes (STAG1, PDS5A and PDS5B; Extended Data Fig. 4e, f).
Pathway analysis. Biological pathways for candidate driver genes were assigned 
using public pathway databases (KEGG and version 2.0 of the NCI RAS Pathway, 
https://www.cancer.gov/PublishedContent/Images/images/nci/organization/ras/
blog/ras-pathway-v2.__v60096472.jpg), literature reviews, and biological networks 
produced by HotNet2. For each pathway in each histotype, a tumour was counted 
if any genes of that pathway were mutated. The percentage of variants in genes 
unique to paediatric cancers was calculated by excluding genes reported in the 
three TCGA pan-cancer studies1,2,4.
Mutual exclusivity and co-occurrence of mutations. We tested mutual exclusivity 
and co-occurrence of mutations for the 142 driver genes. For each histotype, we 
performed this analysis in two separate sample sets: (1) samples with WGS (T-ALL 
with WES and SNP6), and (2) WGS and WES together (only SNVs and indels con-
sidered to avoid detection bias due to platform differences for CNVs and structural 
variants). For a gene pair A and B (mutated in five or more samples), we performed 
two-sided Fisher’s exact test according to their mutation status. The R package 
qvalue51 was used to control for multiple testing. Although the co-occurrence test 
is well-powered for most gene pairs, we recognize that the mutual exclusivity test 
is not powered for most gene pairs, and pairs with P <  0.05 were reported even if 
Q >  0.05 (Supplementary Table 3).
Saturation analysis. To study the effect of sample size on detecting driver genes, 
we performed down-sampling analysis in the pan-cancer cohort and in each 
 histotype2, for GRIN and MutSigCV separately. For each combination, we repeated 
the statistical analysis for a series of subsets of cases from 1 to the total number of 
samples. The number of genes (of the 142 driver genes) with false discovery rate 
less than 0.01 were counted for the corresponding subset. Analysis for individual 
histotypes was limited to those with at least 200 samples (osteosarcomas and Wilms 
tumours excluded).
Somatic variant pathogenicity analysis. We implemented a somatic mutation clas-
sifier Medal_Ceremony23 (M.N.E. et al., unpublished) to identify  additional driver 
variants in genes that did not pass the statistical testing. Pathogenic  variants include 
(1) hotspot SNVs and indel mutations for known cancer genes in any  cancer 
type; (2) pathogenic mutations in ClinVar; (3) truncation mutations in known 
tumour suppressor genes that were expressed in the cancer histotype; and (4)  
known recurrent gene fusions, focal deletions, truncations, and amplifications 
that affect key pathways of any cancer type and that were simultaneously corro-
borated by an aberrant expression profile. We identified 184 variants in another 
82 genes (Supplementary Table 4). BRAF was the most frequently mutated, with 
nine variants.

We also reviewed novel hotspot mutations detected in three or more  samples. 
After removing low-confidence mutations and those without expression, one 
 hotspot was found (MAP3K4 G1366R, n =  4). Recurrent internal tandem 
 duplication (ITD) was also reviewed for evidence in both DNA and RNA, yielding 
the discovery of UBTF-ITD in AML.
Tumour purity assessment. We used regions with copy number loss or copy 
 neutral LOH as well as SNVs (coding and noncoding) from diploid regions to 

estimate tumour purity. For regions with LOH, a previously described method 
was used42. For SNVs, an unsupervised clustering analysis was performed with the 
R package mclust. Tumour purity was defined to be two times the highest cluster 
centre that was < 0.5. The maximal CNA and SNV purity was used.

We compared our estimates with blast counts for 197 AML and 9 B-ALL 
 samples. Of the 135 tumours with blast count > 70% (value ‘many’ in clinical file 
was mapped as > 70%), we identified 127 (94%) with purities > 70% (seven of the 
other eight tumours had purities > 50%). An additional 40 tumours were estimated 
with purities > 70%, although their blast count was below 70%. Thirty-one tumours 
were classified as low purity (< 70%) by both our analysis and blast count.
KRAS isoform analysis. We investigated alternative splicing in KRAS (Extended 
Data Fig. 6), as differential oncogenic activity of mutant alleles expressed in KRAS 
4a or 4b isoforms has been reported previously52. We detected splice junction 
reads connecting exon 3 to one of the two novel acceptor sites in the last intron 
(53 bp apart). This aberrant splicing is predicted to create two novel isoforms, each 
incorporating one of the two novel exons (40 bp and 93 bp, respectively) located 
2.2 kb downstream of exon 4A (Extended Data Fig. 6b). These novel isoforms 
would form truncated KRAS proteins (154/150 amino acid), each retaining the 
GTPase domain but losing the hypervariable region that is critical for targeting 
KRAS to the plasma membrane53.

One of the two novel isoforms (novel isoform 2) was detected in myeloid cells 
from three healthy donors (data not shown). Protein products of KRAS isoforms 
in AML cells were analysed by western blot (Supplementary Notes 5, 6).
RNA-seq data analysis. RNA-seq data were mapped with StrongArm23, and 
 rearrangements identified with CICERO23, followed by manual review. We per-
formed RNA-seq clustering to confirm the tissue of origin and analysed immune 
infiltration using ESTIMATE54 and CIBERSORT55 (Extended Data Fig. 7, 
Supplementary Notes 7, 8).
Allele-specific expression (ASE) in RNA-seq. CGI and WES allele counts were 
combined whenever possible. Point mutations were required to have DNA and 
RNA coverage ≥ 20×. Variants with | RNA_MAF – DNA_MAF| > 0.2 and a false 
discovery rate of < 0.01 (calculated with R package qvalue51 on two-sided Fisher’s 
exact test P) were considered to show ASE. Within-sample analysis was performed 
to distinguish ASE from potential artefacts caused by normal-in-tumour contami-
nation (Extended Data Fig. 8d, Supplementary Note 9, Supplementary Table 5).
Single-cell targeted re-sequencing. One cryopreserved vial each from 
patients PAPWIU and PABLDZ was thawed using the ThawSTAR system 
(MedCision) and then diluted in RPMI supplemented with 1% BSA. The cells 
were then washed five times with C1 DNA-seq wash buffer according to the 
manufacturer’s instructions (Fluidigm), counted and viability estimated using 
the LUNA-FL system (Logos Biosystems), then diluted to 300 cells per μ l and 
loaded in a small C1 DNA-seq chip according to the manufacturer’s instruc-
tions (Fluidigm, except the suspension buffer to cell ratio was changed from 
4:6 to 6:4). The cells also underwent an on-chip LIVE/DEAD viability stain 
(Thermo Fisher). Each capture site was imaged using a Leica inverted micro-
scope and phase contrast images, as well as fluorescent images with GFP and 
Y3 filters, were acquired to determine the number of cells captured and the 
viability of each. The cells then underwent lysis, neutralization, and MDA 
WGA according to the manufacturer’s instructions (Fluidigm) using the 
GenomePhiv2 MDA kit (GE Life Sciences). One C1 chip was run per patient. 
Selected variants and germline SNPs then underwent microfluidic PCR-based  
targeted resequencing in the bulk sample or genomes amplified from the single 
cells using the Access Array System as previously described56. Target-specific assays 
were designed using primer3plus (https://probes.pw.usda.gov/batchprimer3/)  
and employed oligos purchased from Integrated DNA Technologies; multiplexing 
was performed according to guidelines in the Access Array manual (Fluidigm). 
All samples were loaded with the Access Array loader and underwent PCR cycling 
in an FC1 system, followed by sample-specific barcoding using standard PCR, 
all according to the manufacturer’s instructions (Fluidigm). Amplicons were run 
on the MiSeq using v2 chemistry with 2 ×  150-bp paired-end reads (Illumina),  
using custom sequencing primers, according to the Access Array manual 
(Fluidigm).
Single-cell sequencing data analysis. Mapped BAM files for each of the 96 
 single-cell assays were genotyped for all designed markers. Assays with two 
 captured cells (6 assays for both cases) or assays with fewer than 50% of designed 
markers with coverage 10×  or greater, were dropped, resulting in 48 assays 
for case PAPWIU (Supplementary Table 6) and 64 assays for case PAPEWB 
(Supplementary Table 7). The assays were called tumour cells if they had one 
or more somatic markers with MAFs greater than 0.05. Germline markers with 
MAFs greater than 0.05 were called positive. The R package pheatmap was used 
to  visualize the single-cell data using hierarchical clustering with ‘binary’ distance 
and ‘complete’ agglomeration method.
Code availability. Custom codes are available from the authors upon request.
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Data availability. The somatic variants used for this study are available at the 
National Cancer Institute TARGET Data Matrix (https://ocg.cancer.gov/ programs/
target/data-matrix) and our ProteinPaint28 portal (https://pecan.stjude.org/pro-
teinpaint/study/pan-target), which also hosts variant data generated by Gröbner 
et al.29 (https://pecan.stjude.org/proteinpaint/study/dkfz-ppc).
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Extended Data Figure 1 | Cohort description and workflow. a, Venn 
diagram of samples analysed by whole-exome (WES), whole genome 
(CGI) and whole transcriptome (RNA-seq) sequencing in this cohort.  
b, c, Sample-level sequencing status of the entire cohort (b) and those with 
WGS data (c, SNP6 for T-ALL). d, Age distribution for each histotype. 
Median, first and third quartiles are indicated by horizontal bars. Sample 
sizes are indicated in parentheses. Percentage of cases with age over 20 
years are indicated. e, Analytical workflow. The tumour/normal BAM 
files of WES data were analysed by our in-house pipeline followed by 
manual quality control. The mutation annotation format files generated 
by CGI were downloaded from TARGET Data Matrix (see Methods) 
and analysed by a pipeline developed for this dataset, including SNVs, 

indels and structural variants. CAN and LOH were analysed using read 
counts of germline SNPs in the mutation annotation format files. Manual 
quality control was also performed. For RNA-seq data, the FASTQ files 
were re-mapped and fusions and ITDs were analysed with CICERO. 
The resultant mutations were analysed by GRIN (SNVs, indels, CNAs, 
structural variants and fusions) and MutSigCV (SNVs and indels) to 
discover 142 recurrently mutated genes. f, One representative sample with 
chromothripsis for each histotype. CNAs are shown in the inner circle, 
orange indicates copy gain and blue indicates copy loss. Intra- and inter-
chromosomal rearrangements are shown as green and purple curves, 
respectively.
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Eight B-ALL samples with signatures of UV 
exposure. a, List of samples with UV signatures detected. b, Inference 
of ethnicity for cases CAAABF and PANXDR from 654 TARGET CGI 
samples by principal component analysis (Supplementary Note 10).  
c, Total spectrum of mutational signatures of the eight UV mutation 
samples. d, SNVs of case CAAABF have a cross-validation rate of 90.4% 
with Illumina WGS data. e, High concordance of MAF values of SNVs 
derived from CGI and Illumina WGS, categorized by UV and non-UV 
mutations. Listed are Pearson’s correlation coefficient (r) and P value 
derived from linear regression. Numbers of SNVs are indicated in 
parentheses. f, Inter-chromosomal distance and density plots for UV 
and non-UV mutations in case CAAABF. Top, inter-mutational distance 
(log10 scale) of UV (orange dots) and non-UV (black dots) mutations. 
Chromosomal level gain and loss statuses are indicated. The results 
indicate uniform distribution of mutations with or without UV signature 

across the genome. Middle and bottom panels show density plots of 
UV- and non-UV-mutations, respectively, categorized by chromosomal 
loss (red) and diploid (blue) status in corresponding tumour samples. 
Estimated cluster centres are indicated by corresponding colours. The 
expected MAFs for clonal mutations at given purity and chromosomal 
ploidy status of corresponding tumour are listed in the bottom panel. The 
density plots show that mutations with UV signatures are clonal after 
adjusting for ploidy. g, Inter-chromosomal distance and density plots 
for the other seven cases (key shown in f). h, ALL incidence by ethnicity 
obtained from the most recent registry (1973–2014) of SEER Program 
research data (Supplementary Note 11). i, Mutation spectrum for all SNVs 
(All) and for UV SNVs (T-5) for each of eight cases. Total number of SNVs 
and cosine similarity with COSMIC signature-7 are indicated in each 
panel.
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Extended Data Figure 3 | Driver mutation landscape in paediatric 
cancers. a, The number of samples mutated in each histotype is shown 
with colours coded as in Fig. 2. The presence of each gene in the Cancer 
Gene Census (Census) and prior pan-cancer studies of The Cancer 
Genome Atlas (TCGA) project are indicated. Pathway membership is also 
labelled for each gene. Somatic alterations in T-ALL were based on coding 
SNVs and indels from WES and CNAs from SNP array. b, Percentage of 
samples with focal (≤ 2 Mb) and non-focal (> 2 Mb) deletions in CDKN2A. 
In the focal deletion category, samples with a second hit (either a second 
CNA or a copy neutral LOH) were categorized as ‘focal_homo_loss’. 
For B-ALL, 27 of 218 (12%) non-focal samples had arm-level (such as 
hyperdiplod or hypodiploid B-ALL) CNAs on chromosome 9. Nine of 218 
(4%) B-ALL cases had homozygous CDKN2A deletions with sizes from 2.1 
Mb to 7.2 Mb and were counted as non-focal. TCGA data (no ALL data 

available) were downloaded in December 2015. The number of samples 
is indicated for each histotype. c, Top five genes mutated exclusively in 
each histotype. d, Top five genes mutated in leukaemias. e, Top five genes 
mutated in both leukaemias and solid tumours. f, MAF distribution of 
point mutations in driver genes. Top, density plot of tumour purity for 
each histotype. Percentages of samples with tumour purity > 70% are 
indicated. Bottom, MAF distribution of point mutations in driver genes. 
Aggregated distribution for all driver genes is shown at the top (‘All driver 
muts’), as well as all driver genes in diploid regions (for CGI data, CNA  
| seg.mean|  <  0.2, | logRatio|  <  0.2, and LOH seg.mean <  0.1; for T-ALL 
SNP array data, CNA | seg.mean|  <  0.2). For each biological process 
defined in Fig. 3, the MAF distribution is shown for the genes with the five 
highest mutation frequencies that are mutated in more than five samples. 
The number of mutations in each histotype is shown.
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Extended Data Figure 4 | Example driver mutations. a, Diverse 
mutation types of STAG2. Variants are coloured by histotype as in Fig. 2. 
Circles and half-moons represent mutations and structural alterations, 
respectively. Bottom panel shows RNA-seq for an SNV at the − 8 
position of STAG2 exon 7, which created a de novo splice site resulting 
in an out-of-frame transcript. b–d, Truncating mutations by deletion or 
ITD. e, Cohesin complex detected by HotNet2 analysis. f, Samples with 
mutations in cohesion complex. g–k, Selected examples of singleton 
oncogenic activation caused by high level amplifications including 

CDK4 (g), PDGFRA (h), and YAP1 (i) with FPKM and histotype-wise 
ranks indicated, as well as recurrent co-amplification of MYCN-ALK in 
two NBL samples (j, k). l, Recurrent MAP3K4 mutation with structural 
model in N lobe (m). Location of the mutation p.G1366R is indicated by a 
magenta sphere and the alteration side chain is modelled as a stick. Known 
activating alterations (p.I1361M and p.M1415I) are shown as teal spheres. 
GADD45 binding (A1), kinase inhibitor (A2), and kinase domains  
(B1, B2) are indicated in l. n, ITD in UBTF. o, Fusion of FEV.  
p, q, Mutations in novel driver genes NIPBL and LEMD3.
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Extended Data Figure 5 | Down-sampling analysis of gene discovery. 
The analysis was performed on point mutations with MutSigCV and on 
SNVs, indels, structural variants, CNAs and fusion variants with GRIN 
(see Methods). The resulting candidate driver genes were categorized  
into five frequency bins indicated by different colours. Each point  
(+ ) represents a random subset of the pan-cancer cohort. The line is a 

smoothed fit. a, Analysis performed on entire CGI/WES cohort with 
MutSigCV (left) and CGI cohort with GRIN (right). b, Analysis performed 
with MutSigCV and GRIN for each histotype. Candidate driver genes were 
assigned to three frequency bins (according to corresponding histotypes). 
Sample sizes are indicated in parentheses in each panel.
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Extended Data Figure 6 | Expression of novel KRAS isoforms. a, KRAS 
RNA-seq reads spanning splice junctions in AML samples. Each junction 
is shown as a circle labelled by counts of detected samples, with lines 
connecting the splice sites. The circle’s y-axis position represents the 
median supporting read count. Canonical junctions are coloured blue 
and novel junctions red. b, RNA-seq reads in the last intron of KRAS 
illustrate the two novel exons detected in a B-ALL sample (PAPHMH). 
Novel splicing acceptor sites are indicated by red arrows. c, Junction reads 
for KRAS in the same B-ALL sample. Canonical KRAS exons are shown 
as green horizontal bars while novel exons are shown in red (top) and the 
RNA-seq coverage at the KRAS gene locus is shown below. The two novel 
exons are indicated with red arrows. d, Expression of two novel isoforms 
with KRAS4a as a control. Percentage of samples expressing these isoforms 

are indicated. Median, first and third quartiles are indicated by horizontal 
bars. Sample sizes are indicated in parentheses. e, Protein domains for 
KRAS4a, KRAS4b and two novel isoforms. f, KRAS expression (FPKM) 
in AML samples analysed in this study, categorized by the four isoforms. 
g, Western blot for KRAS in 293T cells. Cells were transfected with empty 
vector (lane 1), tagged wild-type KRAS (lane 2), novel isoform 1 (lane 3)  
and novel isoform 2 (lane 4). Protein products of the two novel KRAS 
isoforms are indicated by red arrows. h, Western blot for KRAS in two 
patient tumour samples (PARMZF and PAPWHS). Protein products of 
the two novel isoforms were not detected in these two samples. For g and 
h, the experiments were performed in duplicate and similar results were 
observed (see Supplementary Fig. 1 for gel source data).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Clustering analysis of tumour RNA-seq data 
and immune cell infiltration analysis. a, Clustering analysis was carried 
out for 739 primary tumours with RNA-seq data available. The top 1,000 
most variable expressed genes were clustered using Ward’s minimum 
variance method. Each disease is annotated as shown in the first row with 

colour indicated in the key. b, c, Immune cell infiltration in osteosarcomas 
and NBL. Macrophage M0 and M2 were the dominant immune cell 
populations observed in osteosarcoma tumours (b). T and B cells, followed 
by macrophages, were the major immune cell types observed in NBL 
tumours (c).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterreSeArCH

Extended Data Figure 8 | Analysis of allele-specific expression.  
a, Mutant allele and total read count for SMC6 D1069N in DNA and 
RNA of NBL case PAPZYP. This is to illustrate variants with suppressed 
mutant allele expression despite high DNA MAF and a high level of gene 
expression in RNA-seq. P value was calculated using two-sided Fisher’s 
exact test. DNA coverage of the MYCN and SMC6 region indicating 
multiple segments with high amplification (estimated at 26 copies).  
Details of the last three exons (E26, E27 and E28) of SMC6 are shown with 
DNA structural variants highlighted by vertical red bars. The mutation 
SMC6 D1069N is present in a region disrupted by structural variants, 
which dissociate the last three exons from the rest of SMC6. The high  
DNA MAF was therefore within a gene fragment that could not be 
transcribed and the expressed reference allele was from the intact gene.  
b, Non-expressed truncating (black) and non-truncating (blue) mutations 
showed a similar (P =  0.52, two-sided Wilcoxon rank-sum test) median 
MAF (horizontal black lines). The number of SNVs in each category is 
shown in parentheses. c, Hot spot mutations exhibited elevated mutant 
allele expression. Each mutation is shown as an oval positioned by its DNA 

MAF (x axis) and RNA MAF (y axis). The read count in DNA and RNA is 
depicted by the radius along the x-axis and y-axis direction, respectively. 
Mutations on chromosome X are shown as dotted ovals. Read counts 
from CGI and WES were combined whenever possible. d, Within-sample 
analysis to evaluate the effect of normal cell contamination on ASE. 
Shown are two samples with hotspot SNVs (red dots in cases PAPEWB 
and PATPBS) and two samples with truncating mutations (red circles in 
cases PAJNJJ and PARBFJ), which had a sufficient number of expressed 
coding mutations. The purity of each tumour is indicated. Dots represent 
SNVs and circles represent indels. Smaller symbols indicate the presence 
of CNA or LOH. An asterisk indicates a significant difference in MAFs 
between DNA (x axis) and RNA (y axis), which requires a minimum MAF 
difference of 0.2 (dashed lines) and a two-sided Fisher’s exact test P <  0.01 
(exact P values indicated in each panel). A dot in case PAJNJJ with DNA 
MAF of 0.5 and RNA MAF of 1.0 is not significant owing to low coverage 
(2× ) in RNA-seq. In all four cases, within-sample concordance of DNA 
and RNA MAF for all except the ASE mutation suggest that normal cell 
contamination has a negligible effect on ASE.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 9 | Allele-specific expression of WT1 and JAK2. 
a, b, Hierarchical clustering of single-cell sequencing data for AML case 
PAPWIU, in which rows were ordered by clustering (a) or by position (b). 
Each row represents one germline SNP and each column is a single cell. 
Three clusters (11p LOH, Other, and 11p diploid) were detected according 
to variant allele frequency, ranging from 0.0 (green) to 1.0 (red). The top 
two rows indicate the cell type (tumour or normal) and WT1 D447N 
mutation status. b, Variants within the WT1 locus are highlighted with 
a blue box. The cluster ‘Other’ matches the 11p LOH cluster within the 
WT1 locus as the samples in this cluster had mono-allelic genotypes at 
WT1, probably caused by a focal deletion. The cluster ‘Other’ could also be 
caused by chimeric cells. However, as all cells in this cluster have the same 
pattern matching, the 11p LOH clusters within the WT1 gene (the blue 
box in b represents the genomic location of chr11:32,410,002-32,461,785 
and WT1 is located at chr11:32,409,322-32,457,081). A WT1 focal deletion 
better explains the profile in ‘Other’. c, All nine missense WT1 mutations 
with DNA and RNA data. The lowest RNA coverage is 16 for WT1 R445P 

in AML case PABLDZ. Five mutations exhibiting allele-specific expression 
mutations (two-sided Fisher’s exact test P <  0.01; exact P values also listed 
for each mutation) are highlighted in blue (grey for P ≥  0.01). AML case 
PABLDZ (WT1 R445P) had LOH at the WT1 locus; LOH was present 
in the predominant clone at the diagnosis and may mask the presence of 
ASE in a subclone. d, e, Two JAK2 mutations (R683S and D873N) were 
detected in B-ALL case PAPEWB, in which D873N showed ASE (DNA 
MAF is 3/38, RNA MAF is 28/74, Fisher’s exact test P <  0.01). A single-
cell sequencing experiment was designed to investigate whether the ASE 
could be attributed to subclonal CNA undetectable in the bulk tumour. 
d, The 27 germline SNPs in JAK2 locus were selected along with the two 
somatic JAK2 mutations and the other 46 somatic variants. e, Heat map 
of genotype clusters generated from the 64 assays (4 bulk and 60 single 
cells) passing single-cell sequencing quality control and the original CGI 
genotype data. The absence of a cluster of mono-allelic genotypes indicates 
the absence of 9p LOH, which in turn confirms ASE of D873N.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 10 | Pathway-centric overview of mutational 
landscape in paediatric cancers. a, Heat map of somatic mutations in 
selected pathways across six histotypes. b, Pie chart of mutation frequency 
in selected pathways. The number of samples in the calculation is 

indicated for each histotype. An interactive version of the data is available 
at the ProteinPaint portal (https://pecan.stjude.org/proteinpaint/study/
pan-target).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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    Experimental design
1.   Sample size

Describe how sample size was determined. We analyzed all genome and transcriptome data collected from diagnosis tumor samples 
available under the accession number cited in the Online Methods section, except two cases: 
one is a duplicated neuroblastoma case, and the other is an osteosarcoma case which was 
collected from a patient age > 40 yrs.

2.   Data exclusions

Describe any data exclusions. Besides the two cases excluded from the analysis as described above, WES data from another 
23 osteosarcoma samples were included only for determining driver mutation prevalence but 
not other analyses (see section "Whole exome data analysis" of the Online Methods for 
details).

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

The western blot for KRAS novel isoforms shown in Extended Data Figure 6g and 6h were 
done in duplicates, with similar observations.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not relevant. Patient samples were grouped by disease types in this analysis.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

The investigators were not blinded to group allocation during the analysis. Patient samples 
were grouped by disease types. Detailed comparison was carried out among different type of 
tumors.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Public available softwares: bwa (v0.7.12) for WES data alignment; Bambino for SNV/Indel 
analysis from WES; GRIN, MuSiC (v0.1), MutSigCV (v1.4) for driver mutation analysis; HTSeq 
for expression analysis from RNA-seq; R packages (v3.3.2) for statistical analysis; ESTIMATE 
(v1.0.13) and CIBERSORT for immune infiltration estimation; HotNet2 for pathway analysis; 
Circos (v0.69) for circular genome visualization; ProteinPaint portal for genomic data 
visualization. 
In house tools: STRONGARM for RNA-seq data alignment; CICERO for fusion detection from 
RNA-seq; Medal Ceremony for mutation pathogenicity analysis; ad hoc perl scripts were used 
in filtering genomic variants from CGI dataset.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Monoclonal antibody against human KRAS-N terminus (catalogue # H00003845-M02 
Novusbio Littleton, CO), anti-beta-actin (catalogue # 4967, Cell Signaling Tech Danvers, MA), 
and anti-flag antibody (catalogue # TA50011, Origene Rockville, MD) were used for western 
blot.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. 293T cells purchased from ATCC (catalogue CRL-3216).

b.  Describe the method of cell line authentication used. The 293T cell line was purchased from ATCC (CRL-3216) and authenticated by ATCC.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

We tested the mycoplasma contamination on 293T cells using MycoAlert kit 
(Lonza) and the result is negative.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Patients were recruited through collaborations with the Children's Oncology Group (COG) 
and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project. 
Diagnosis for these patients include B-ALL (N=689, age information missing for 6 cases, 
median age: 5.4 yr), T-ALL (N=267, age information missing for 3 cases, median age: 9.3 yr), 
AML (N=210, median age: 9.4 yr), NBL (N=316, median age: 3.1 yr), WT (N=128, median age: 
4.2 yr) and OS (N=89, median age: 14.4 yr). Gender (N=8, female N=3, male N=5) and race 
(N=6, Hispanic N=1, Caucasion N=4, Asian N=1) information were included for the patients 
with UV signature in Extended Data Figure 2. Other clinical information was not used for this 
study.


	Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours
	Main
	Methods
	Patient samples
	Genomic datasets
	WGS data analysis
	Filtering of point mutations
	Filtering of structural variation
	Copy number alterations
	WES data analysis
	Somatic mutation rate
	Mutational signature analysis
	Chromothripsis analysis
	Discovery of candidate driver genes
	HotNet2 analysis
	Pathway analysis
	Mutual exclusivity and co-occurrence of mutations
	Saturation analysis
	Somatic variant pathogenicity analysis
	Tumour purity assessment
	KRAS isoform analysis
	RNA-seq data analysis
	Allele-specific expression (ASE) in RNA-seq
	Single-cell targeted re-sequencing
	Single-cell sequencing data analysis
	Code availability
	Data availability

	Acknowledgements
	References




