Importance of investing in adolescence from a developmental science perspective

Abstract

This review summarizes the case for investing in adolescence as a period of rapid growth, learning, adaptation, and formational neurobiological development. Adolescence is a dynamic maturational period during which young lives can pivot rapidly—in both negative and positive directions. Scientific progress in understanding adolescent development provides actionable insights into windows of opportunity during which policies can have a positive impact on developmental trajectories relating to health, education, and social and economic success. Given current global changes and challenges that affect adolescents, there is a compelling need to leverage these advances in developmental science to inform strategic investments in adolescent health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Puberty initiates a period of rapid growth and multi-level dynamic change.

References

  1. 1

    Shonkoff, J. P. & Garner, A. S. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 129, e232–e246 (2012)

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Black, M. M. & Hurley, K. M. Investment in early childhood development. Lancet 384, 1244–1245 (2014)

    PubMed  Article  Google Scholar 

  3. 3

    Shonkoff, J. P., Radner, J. M. & Foote, N. Expanding the evidence base to drive more productive early childhood investment. Lancet 389, 14–16 (2017)

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).This review of neuroimaging data presents a model of pubertal changes in social and affective processing, and how these may support the greater flexibility in motivations and priorities needed to navigate the changing social contexts of adolescence.

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Schulz, K. M. & Sisk, C. L. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci. Biobehav. Rev. 70, 148–158 (2016). This study reviews the organizational effects of gonadal hormones on brain and behaviour, and presents a ‘wedge-shaped’ model of decreasing sensitivity to gonadal hormonal effects with age.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Lee, F. S. et al. Adolescent mental health—opportunity and obligation. Science 346, 547–549 (2014)

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  7. 7

    Sheehan, P . et al. Building the foundations for sustainable development: a case for global investment in the capabilities of adolescents. Lancet 390, 1792–1806 (2017).This study estimates returns for investments in adolescents in low-income, lower-middle income, and upper-middle income countries, and concludes that investments in health and education could generate high economic and social returns.

    PubMed  Article  Google Scholar 

  8. 8

    Patton, G. C. & Viner, R. Pubertal transitions in health. Lancet 369, 1130–1139 (2007)

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Nelson, E. E., Jarcho, J. M. & Guyer, A. E. Social re-orientation and brain development: An expanded and updated view. Dev. Cogn. Neurosci. 17, 118–127 (2016)

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Piekarski, D. J. et al. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res. 1654, 123–144 (2017)

    CAS  PubMed  Article  Google Scholar 

  11. 11

    De Lorme, K., Bell, M. R. & Sisk, C. L. The teenage brain: social reorientation and the adolescent brain—the role of gonadal hormones in the male Syrian hamster. Curr. Dir. Psychol. Sci. 22, 128–133 (2013)

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    van den Bos, W. Neural mechanisms of social reorientation across adolescence. J. Neurosci. 33, 13581–13582 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Crockett, L. J. & Crouter, A. C. Pathways through Adolescence: Individual Development in Relation to Social Contexts (Lawrence Erlbaum, 1994)

  14. 14

    Cohen, A. O. et al. When is an adolescent an adult? Assessing cognitive control in emotional and nonemotional contexts. Psychol. Sci. 27, 549–562 (2016)

    PubMed  Article  Google Scholar 

  15. 15

    Patton, G. C. et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet 387, 2423–2478 (2016).This comprehensive report describes how unprecedented global forces are shaping the health and wellbeing of the largest generation of adolescents in human history.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Cohen, A. O., Bonnie, R. J., Taylor-Thompson, K. & Casey, B.J. When does a juvenile become an adult: implications for law and policy. Temp. Law Rev. 88, 769–788 (2015)

    Google Scholar 

  17. 17

    Davey, C. G., Yücel, M. & Allen, N. B. The emergence of depression in adolescence: development of the prefrontal cortex and the representation of reward. Neurosci. Biobehav. Rev. 32, 1–19 (2008)

    PubMed  Article  Google Scholar 

  18. 18

    Blakemore, S.-J. & Mills, K. L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 65, 187–207 (2014).This study describes how brain regions involved in social processing and behaviour undergo both structural changes and functional reorganization during the second decade of life, possibly reflecting a sensitive period for adapting to one’s social environment.

    PubMed  Article  Google Scholar 

  19. 19

    Blakemore, S. J. & Choudhury, S. Development of the adolescent brain: implications for executive function and social cognition. J. Child Psychol. Psychiatry 47, 296–312 (2006)

    PubMed  Article  Google Scholar 

  20. 20

    Dumontheil, I. Development of abstract thinking during childhood and adolescence: the role of rostrolateral prefrontal cortex. Dev. Cogn. Neurosci. 10, 57–76 (2014)

    PubMed  Article  Google Scholar 

  21. 21

    de Water, E., Cillessen, A. H. & Scheres, A. Distinct age-related differences in temporal discounting and risk taking in adolescents and young adults. Child Dev. 85, 1881–1897 (2014)

    PubMed  Google Scholar 

  22. 22

    Gestsdottir, S., Bowers, E., von Eye, A., Napolitano, C. M. & Lerner, R. M. Intentional self regulation in middle adolescence: the emerging role of loss-based selection in positive youth development. J. Youth Adolesc. 39, 764–782 (2010)

    PubMed  Article  Google Scholar 

  23. 23

    Schwartz, S. J. & Petrova, M. Fostering healthy identity development in adolescence. Nat. Hum. Behav. https://doi.org/10.1038/s41562-017-0283-2 (2018)

    Article  Google Scholar 

  24. 24

    Suleiman, A. B ., Galván, A ., Harden, K. P. & Dahl, R. E. Becoming a sexual being: the ‘elephant in the room’of adolescent brain development. Dev. Cogn. Neurosci. 25, 209–220 (2017).This review explores the role of puberty in the social, emotional and cognitive maturation processes necessary for reproductive success, and the role of sex and romance as important developmental dimensions of health and well-being in adolescence.

    PubMed  Article  Google Scholar 

  25. 25

    Dahl, R. E. Adolescent brain development: a period of vulnerabilities and opportunities. Keynote address. Ann. NY Acad. Sci. 1021, 1–22 (2004)

    PubMed  Article  ADS  Google Scholar 

  26. 26

    United Nations. World Population Prospects, the 2012 Revision. https://esa.un.org/unpd/wpp/ (UNDESA, 2013)

  27. 27

    Bell, V., Bishop, D. V. & Przybylski, A. K. The debate over digital technology and young people. Br. Med. J. 351, h3064 (2015)

    Article  CAS  Google Scholar 

  28. 28

    Madden, M., Lenhart, A., Duggan, M., Cortesi, S. & Gasser, U. Teens and Technology 2013http://www.pewinternet.org/2013/03/13/teens-and-technology-2013/ (2016)

  29. 29

    Spies Shapiro, L. A. & Margolin, G. Growing up wired: social networking sites and adolescent psychosocial development. Clin. Child Fam. Psychol. Rev. 17, 1–18 (2014)

    PubMed  Article  Google Scholar 

  30. 30

    Smetana, J. G., Metzger, A., Gettman, D. C. & Campione-Barr, N. Disclosure and secrecy in adolescent–parent relationships. Child Dev. 77, 201–217 (2006)

    PubMed  Article  Google Scholar 

  31. 31

    Notten, N., Peter, J., Kraaykamp, G. & Valkenburg, P. M. Research note: digital divide across borders—a cross-national study of adolescents’ use of digital technologies. Eur. Sociol. Rev. 25, 551–560 (2009)

    Article  Google Scholar 

  32. 32

    Worthman, C. M. & Trang, K. Dynamics of body time, social time and life history at adolescence. Nature https://doi.org/10.1038/nature25750 (2018)

    CAS  PubMed  Article  ADS  Google Scholar 

  33. 33

    Palan, K. M., Gentina, E. & Muratore, I. Adolescent consumption autonomy: a cross-cultural examination. J. Bus. Res. 63, 1342–1348 (2010)

    Article  Google Scholar 

  34. 34

    Stuckler, D., McKee, M., Ebrahim, S. & Basu, S. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. PLoS Med. 9, e1001235 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    McCarthy, K. B. M. & Hall, K. Investing when it Counts: Reviewing the Evidence and Charting a Course of Research and Action for Very Young Adolescents (Population Council, 2016). This report reviews the literature and presents a compelling case that investing in very young adolescents (ages 10–14) is important, as this is a pivotal time in the life course.

  36. 36

    World Health Organization. Global Accelerated Action for the Health of Adolescents (AA-HA!): guidance to support country implementation. http://www.who.int/maternal_child_adolescent/topics/adolescence/framework-accelerated-action/en/ (WHO, 2017)

  37. 37

    Akresh, R., Bhalotra, S., Leone, M. & Osili, U. O. War and stature: growing up during the Nigerian Civil War. Am. Econ. Rev. 102, 273–277 (2012)

    Article  Google Scholar 

  38. 38

    Holmqvist, G. & Pereira. A. Famines and stunting: Are adolescents the hardest hit? https://blogs.unicef.org/evidence-for-action/famines-and-stunting-are-adolescents-the-hardest-hit/ (Unicef, 2017)

  39. 39

    Falconi, A., Gemmill, A., Dahl, R. E. & Catalano, R. Adolescent experience predicts longevity: evidence from historical epidemiology. J. Dev. Orig. Health Dis. 5, 171–177 (2014)

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Bonjour, J. P., Theintz, G., Buchs, B., Slosman, D. & Rizzoli, R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J. Clin. Endocrinol. Metab. 73, 555–563 (1991)

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Mericq, V. et al. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 13, 50–62 (2017)

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Drzewiecki, C. M., Willing, J. & Juraska, J. M. Synaptic number changes in the medial prefrontal cortex across adolescence in male and female rats: a role for pubertal onset. Synapse 70, 361–368 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011)

    CAS  PubMed  Article  ADS  Google Scholar 

  44. 44

    Rakic, P., Bourgeois, J. P. & Goldman-Rakic, P. S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog. Brain Res. 102, 227–243 (1994)

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Benes, F. M., Vincent, S. L., Molloy, R. & Khan, Y. Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse 23, 237–245 (1996)

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Cunningham, M. G., Bhattacharyya, S. & Benes, F. M. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J. Comp. Neurol. 453, 116–130 (2002)

    PubMed  Article  Google Scholar 

  47. 47

    Johnson, C. M. et al. Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence. Dev. Cogn. Neurosci. 18, 113–120 (2016)

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Arruda-Carvalho, M., Wu, W. C., Cummings, K. A. & Clem, R. L. Optogenetic examination of prefrontal–amygdala synaptic development. J. Neurosci. 37, 2976–2985 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Larsen, B., Verstynen, T. D., Yeh, F. C. & Luna, B. Developmental changes in the integration of affective and cognitive corticostriatal pathways are associated with reward-driven behavior. Cereb. Cortex https://doi.org/10.1093/cercor/bhx162 (2017)

    Article  Google Scholar 

  50. 50

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005)

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Piekarski, D. J ., Boivin, J. R. & Wilbrecht, L. Ovarian hormones organize the maturation of inhibitory neurotransmission in the frontal cortex at puberty onset in female mice. Curr. Biol. 27, 1735–1745 (2017).This study provides evidence for organizational effects of ovarian hormones on the maturation of inhibitory neurotransmission in the cingulate cortex in mice, and provides experimental evidence for puberty-linked changes in learning.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Zuo, Y., Lin, A., Chang, P. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005)

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Baum, G. L. et al. Modular segregation of structural brain networks supports the development of executive function in youth. Curr. Biol. 27, 1561–1572 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Paus, T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 72, 26–35 (2010)

    PubMed  Article  Google Scholar 

  56. 56

    Gogolla, N., Caroni, P., Lüthi, A. & Herry, C. Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261 (2009)

    CAS  PubMed  Article  ADS  Google Scholar 

  57. 57

    Balmer, T. S., Carels, V. M., Frisch, J. L. & Nick, T. A. Modulation of perineuronal nets and parvalbumin with developmental song learning. J. Neurosci. 29, 12878–12885 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Lee, H. H. C. et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol. Psychiatry 22, 680–688 (2017)

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Guskjolen, A., Josselyn, S. A. & Frankland, P. W. Age-dependent changes in spatial memory retention and flexibility in mice. Neurobiol. Learn. Mem. 143, 59–66 (2017)

    PubMed  Article  Google Scholar 

  60. 60

    Davidow, J. Y., Foerde, K., Galván, A. & Shohamy, D. An Upside to reward sensitivity: the hippocampus supports enhanced reinforcement learning in adolescence. Neuron 92, 93–99 (2016)

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Johnson, C. & Wilbrecht, L. Juvenile mice show greater flexibility in multiple choice reversal learning than adults. Dev. Cogn. Neurosci. 1, 540–551 (2011)

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    van den Bos, W., Cohen, M. X., Kahnt, T. & Crone, E. A. Striatum–medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cereb. Cortex 22, 1247–1255 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    van der Schaaf, M. E., Warmerdam, E., Crone, E. A. & Cools, R. Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: relevance for dopamine’s role in adolescent decision making. Dev. Cogn. Neurosci. 1, 578–590 (2011)

    PubMed  Article  Google Scholar 

  64. 64

    Gopnik, A. et al. Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proc. Natl Acad. Sci. USA 114, 7892–7899 (2017)

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Lucas, C. G., Bridgers, S., Griffiths, T. L. & Gopnik, A. When children are better (or at least more open-minded) learners than adults: developmental differences in learning the forms of causal relationships. Cognition 131, 284–299 (2014)

    PubMed  Article  Google Scholar 

  66. 66

    Walker, C. M., Bridgers, S. & Gopnik, A. The early emergence and puzzling decline of relational reasoning: effects of knowledge and search on inferring abstract concepts. Cognition 156, 30–40 (2016)

    PubMed  Article  Google Scholar 

  67. 67

    Braams, B. R., van Duijvenvoorde, A. C., Peper, J. S. & Crone, E. A. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J. Neurosci. 35, 7226–7238 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, D. & Brem, S. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development. Neuroimage 104, 347–354 (2015)

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Walker, D. M . et al. Adolescence and reward: making sense of neural and behavioral changes amid the chaos. J. Neurosci. 37, 10855–10866 (2017).This study describes the role pubertal hormones have in the development of adolescent social and reward-related behaviours with a focus on sex differences, the medial prefrontal cortex, mesocorticolimbic dopamine and amygdala in rodents

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Pfeifer, J. H. et al. Longitudinal change in the neural bases of adolescent social self-evaluations: effects of age and pubertal development. J. Neurosci. 33, 7415–7419 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Nelson, E. E., Leibenluft, E., McClure, E. B. & Pine, D. S. The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol. Med. 35, 163–174 (2005)

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Goddings, A. L., Burnett Heyes, S., Bird, G., Viner, R. M. & Blakemore, S. J. The relationship between puberty and social emotion processing. Dev. Sci. 15, 801–811 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Somerville, L. H. et al. The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychol. Sci. 24, 1554–1562 (2013)

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Stroud, L. R. et al. Stress response and the adolescent transition: performance versus peer rejection stressors. Dev. Psychopathol. 21, 47–68 (2009)

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Rosen, M. L. et al. Salience network response to changes in emotional expressions of others is heightened during early adolescence: relevance for social functioning. Dev. Sci. https://doi.org/10.1111/desc.12571 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Herting, M. M. & Sowell, E. R. Puberty and structural brain development in humans. Front. Neuroendocrinol. 44, 122–137 (2017)

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Juraska, J. M. & Willing, J. Pubertal onset as a critical transition for neural development and cognition. Brain Res. 1654, 87–94 (2017)

  78. 78

    Sisk, C. L. Hormone-dependent adolescent organization of socio-sexual behaviors in mammals. Curr. Opin. Neurobiol. 38, 63–68 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999)

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Fawcett, T. W. & Frankenhuis, W. E. Adaptive explanations for sensitive windows in development. Front. Zool. 12, S3 (2015)

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Insel, T. R. & Fernald, R. D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004)

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Werker, J. F. & Hensch, T. K. Critical periods in speech perception: new directions. Annu. Rev. Psychol. 66, 173–196 (2015)

    PubMed  Article  Google Scholar 

  83. 83

    Alvarez-Buylla, A. & Kirn, J. R. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J. Neurobiol. 33, 585–601 (1997)

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Kirn, J., O’Loughlin, B., Kasparian, S. & Nottebohm, F. Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc. Natl Acad. Sci. USA 91, 7844–7848 (1994)

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  85. 85

    Templeton, C. N. et al. Immediate and long-term effects of testosterone on song plasticity and learning in juvenile song sparrows. Behav. Processes 90, 254–260 (2012)

    PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Bottjer, S. W. & Johnson, F. Circuits, hormones, and learning: vocal behavior in songbirds. J. Neurobiol. 33, 602–618 (1997)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Marler, P., Peters, S., Ball, G. F., Dufty, A. M. Jr & Wingfield, J. C. The role of sex steroids in the acquisition and production of birdsong. Nature 336, 770–772 (1988)

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  88. 88

    Marler, P., Peters, S. & Wingfield, J. Correlations between song acquisition, song production, and plasma levels of testosterone and estradiol in sparrows. J. Neurobiol. 18, 531–548 (1987)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Remage-Healey, L., Dong, S. M., Chao, A. & Schlinger, B. A. Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J. Neurophysiol. 107, 1621–1631 (2012)

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Matragrano, L. L., LeBlanc, M. M., Chitrapu, A., Blanton, Z. E. & Maney, D. L. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird. Dev. Neurobiol. 73, 455–468 (2013)

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Matragrano, L. L. et al. Estradiol-dependent modulation of serotonergic markers in auditory areas of a seasonally breeding songbird. Behav. Neurosci. 126, 110–122 (2012)

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Cho, K. K. et al. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/− mice. Neuron 85, 1332–1343 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    De Lorme, K. C. & Sisk, C. L. The organizational effects of pubertal testosterone on sexual proficiency in adult male Syrian hamsters. Physiol. Behav. 165, 273–277 (2016)

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Cardoos, S. L. et al. Social status strategy in early adolescent girls: testosterone and value-based decision making. Psychoneuroendocrinology 81, 14–21 (2017)

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Spielberg, J. M., Olino, T. M., Forbes, E. E. & Dahl, R. E. Exciting fear in adolescence: does pubertal development alter threat processing? Dev. Cogn. Neurosci. 8, 86–95 (2014)

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Tyborowska, A., Volman, I., Smeekens, S., Toni, I. & Roelofs, K. Testosterone during puberty shifts emotional control from pulvinar to anterior prefrontal cortex. J. Neurosci. 36, 6156–6164 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Bos, P. A., Panksepp, J., Bluthé, R. M. & van Honk, J. Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies. Front. Neuroendocrinol. 33, 17–35 (2012)

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Dreher, J. C. et al. Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proc. Natl Acad. Sci. USA 113, 11633–11638 (2016)

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A. & Henrich, J. Two ways to the top: evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. J. Pers. Soc. Psychol. 104, 103–125 (2013)

    Article  Google Scholar 

  100. 100

    Chandra-Mouli, V. et al. Implications of the global early adolescent study’s formative research findings for action and for research. J. Adolesc. Health 61, S5–S9 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Allen, N. B ., Latham, M. D ., Barrett, A ., Sheeber, L. & Davis, B. in Comprehensive Women’s Mental Health (eds Castle, D . & Abel, J .) 65–80 (Cambridge Univ. Press, 2016)

  102. 102

    Avenevoli, S., Swendsen, J., He, J.-P., Burstein, M. & Merikangas, K. R. Major depression in the national comorbidity survey–adolescent supplement: prevalence, correlates, and treatment. J. Am. Acad. Child Adolesc. Psychiatry 54, 37–44 (2015)

    PubMed  Article  Google Scholar 

  103. 103

    Maggs, J. L., Almeida, D. M. & Galambos, N. L. Risky business: the paradoxical meaning of problem behavior for young adolescents. J. Early Adolesc. 15, 344–362 (1995)

    Article  Google Scholar 

  104. 104

    Silbereisen, R. K. & Reitzle, M. in Self-Regulatory Behaviour and Risk Taking: Causes and Consequences (eds Lipsitt, L. P . & Mitnick, L. L. ) 199–217 (Ablex, 1991)

  105. 105

    Catalano, R. F., Hawkins, J. D., Berglund, M. L., Pollard, J. A. & Arthur, M. W. Prevention science and positive youth development: competitive or cooperative frameworks? J. Adolesc. Health 31, 230–239 (2002)

    PubMed  Article  Google Scholar 

  106. 106

    Yeager, D. S ., Dahl, R. E. & Dweck, C. S. Why interventions to influence adolescent behavior often fail but could succeed. Perspect. Psychol. Sci. 13, 101–122 (2018).This study provides a developmental perspective as to why traditional preventative school-based interventions work less well for adolescents, and reviews examples of promising approaches that take into account adolescents’ enhanced desire to feel respected and be accorded status.

    PubMed  Article  Google Scholar 

  107. 107

    Costello, E. J . & Angold, A. in Developmental Psychopathology 3rd edn (ed. Cicchetti, D. ) 1–35 (John Wiley & Sons, 2016)

  108. 108

    Suleiman, A. B. & Dahl, R. E. Leveraging neuroscience to inform adolescent health: The need for an innovative transdisciplinary developmental science of adolescence. J. Adolesc. Health 60, 240–248 (2017)

    PubMed  Article  Google Scholar 

  109. 109

    Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110

    Khoury, M. J., Iademarco, M. F. & Riley, W. T. Precision public health for the era of precision medicine. Am. J. Prev. Med. 50, 398–401 (2016)

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Knoll, L. J. et al. A window of opportunity for cognitive training in adolescence. Psychol. Sci. 27, 1620–1631 (2016)

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112

    Knoll, L. J., Leung, J. T., Foulkes, L. & Blakemore, S. J. Age-related differences in social influence on risk perception depend on the direction of influence. J. Adolesc. 60, 53–63 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Minges, K. E. & Redeker, N. S. Delayed school start times and adolescent sleep: A systematic review of the experimental evidence. Sleep Med. Rev. 28, 86–95 (2016)

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114

    Freeman, D. et al. The effects of improving sleep on mental health (OASIS): a randomised controlled trial with mediation analysis. Lancet Psychiatry 4, 749–758 (2017)

    PubMed  PubMed Central  Google Scholar 

  115. 115

    Okonofua, J. A., Paunesku, D. & Walton, G. M. Brief intervention to encourage empathic discipline cuts suspension rates in half among adolescents. Proc. Natl Acad. Sci. USA 113, 5221–5226 (2016)

    CAS  PubMed  Article  ADS  Google Scholar 

  116. 116

    Anderson, S. A., Classey, J. D., Condé, F., Lund, J. S. & Lewis, D. A. Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience 67, 7–22 (1995)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117

    Gabard-Durnam, L. J. et al. The development of human amygdala functional connectivity at rest from 4 to 23 years: a cross-sectional study. Neuroimage 95, 193–207 (2014)

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Willing, J., Cortes, L. R., Brodsky, J. M., Kim, T. & Juraska, J. M. Innervation of the medial prefrontal cortex by tyrosine hydroxylase immunoreactive fibers during adolescence in male and female rats. Dev. Psychobiol. 59, 583–589 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Morris, A. S., Criss, M. M., Silk, J. S. & Houltberg, B. J. The impact of parenting on emotion regulation during childhood and adolescence. Child Dev. Perspect. 11, 233–238 (2017)

    Article  Google Scholar 

  120. 120

    Schwartz, O. S., Sheeber, L. B., Dudgeon, P. & Allen, N. B. Emotion socialization within the family environment and adolescent depression. Clin. Psychol. Rev. 32, 447–453 (2012)

    PubMed  Article  Google Scholar 

  121. 121

    Whittle, S. et al. Prefrontal and amygdala volumes are related to adolescents’ affective behaviors during parent–adolescent interactions. Proc. Natl Acad. Sci. USA 105, 3652–3657 (2008)

    CAS  PubMed  Article  ADS  Google Scholar 

  122. 122

    Whittle, S. et al. Observed measures of negative parenting predict brain development during adolescence. PLoS ONE 11, e0147774 (2016)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123

    Callaghan, B. L. et al. Amygdala resting connectivity mediates association between maternal aggression and adolescent major depression: a 7-year longitudinal study. J. Am. Acad. Child Adolesc. Psychiatry 56, 983–991 (2017)

    PubMed  Article  Google Scholar 

  124. 124

    Whittle, S. et al. Role of positive parenting in the association between neighborhood social disadvantage and brain development across adolescence. JAMA Psychiatry 74, 824–832 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125

    Yap, M. B. et al. Parents in prevention: a meta-analysis of randomized controlled trials of parenting interventions to prevent internalizing problems in children from birth to age 18. Clin. Psychol. Rev. 50, 138–158 (2016)

    PubMed  Article  Google Scholar 

  126. 126

    Richards, B. A. et al. Patterns across multiple memories are identified over time. Nat. Neurosci. 17, 981–986 (2014)

    CAS  PubMed  Article  Google Scholar 

  127. 127

    Tompary, A. & Davachi, L. Consolidation Promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron 96, 228–241 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank the leadership team of the Center on the Developing Adolescent, including A. Galvan, A. Fuligni and J. Pfeifer, who have provided important intellectual contributions through many formative discussions over the past two years—in ways that were instrumental to an integrative understanding of the developmental science of adolescence as expressed in this paper.

Author information

Affiliations

Authors

Contributions

R.E.D. and N.B.A. developed the outline of the paper. All authors drafted the manuscript, and provided critical revisions. All authors approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Nicholas B. Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks B. J. Casey and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahl, R., Allen, N., Wilbrecht, L. et al. Importance of investing in adolescence from a developmental science perspective. Nature 554, 441–450 (2018). https://doi.org/10.1038/nature25770

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.