Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Importance of investing in adolescence from a developmental science perspective

Abstract

This review summarizes the case for investing in adolescence as a period of rapid growth, learning, adaptation, and formational neurobiological development. Adolescence is a dynamic maturational period during which young lives can pivot rapidly—in both negative and positive directions. Scientific progress in understanding adolescent development provides actionable insights into windows of opportunity during which policies can have a positive impact on developmental trajectories relating to health, education, and social and economic success. Given current global changes and challenges that affect adolescents, there is a compelling need to leverage these advances in developmental science to inform strategic investments in adolescent health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Puberty initiates a period of rapid growth and multi-level dynamic change.

Similar content being viewed by others

References

  1. Shonkoff, J. P. & Garner, A. S. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 129, e232–e246 (2012)

    Article  PubMed  Google Scholar 

  2. Black, M. M. & Hurley, K. M. Investment in early childhood development. Lancet 384, 1244–1245 (2014)

    Article  PubMed  Google Scholar 

  3. Shonkoff, J. P., Radner, J. M. & Foote, N. Expanding the evidence base to drive more productive early childhood investment. Lancet 389, 14–16 (2017)

    Article  PubMed  Google Scholar 

  4. Crone, E. A. & Dahl, R. E. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat. Rev. Neurosci. 13, 636–650 (2012).This review of neuroimaging data presents a model of pubertal changes in social and affective processing, and how these may support the greater flexibility in motivations and priorities needed to navigate the changing social contexts of adolescence.

    Article  CAS  PubMed  Google Scholar 

  5. Schulz, K. M. & Sisk, C. L. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci. Biobehav. Rev. 70, 148–158 (2016). This study reviews the organizational effects of gonadal hormones on brain and behaviour, and presents a ‘wedge-shaped’ model of decreasing sensitivity to gonadal hormonal effects with age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, F. S. et al. Adolescent mental health—opportunity and obligation. Science 346, 547–549 (2014)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Sheehan, P . et al. Building the foundations for sustainable development: a case for global investment in the capabilities of adolescents. Lancet 390, 1792–1806 (2017).This study estimates returns for investments in adolescents in low-income, lower-middle income, and upper-middle income countries, and concludes that investments in health and education could generate high economic and social returns.

    Article  PubMed  Google Scholar 

  8. Patton, G. C. & Viner, R. Pubertal transitions in health. Lancet 369, 1130–1139 (2007)

    Article  PubMed  Google Scholar 

  9. Nelson, E. E., Jarcho, J. M. & Guyer, A. E. Social re-orientation and brain development: An expanded and updated view. Dev. Cogn. Neurosci. 17, 118–127 (2016)

    Article  PubMed  Google Scholar 

  10. Piekarski, D. J. et al. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res. 1654, 123–144 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. De Lorme, K., Bell, M. R. & Sisk, C. L. The teenage brain: social reorientation and the adolescent brain—the role of gonadal hormones in the male Syrian hamster. Curr. Dir. Psychol. Sci. 22, 128–133 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  12. van den Bos, W. Neural mechanisms of social reorientation across adolescence. J. Neurosci. 33, 13581–13582 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crockett, L. J. & Crouter, A. C. Pathways through Adolescence: Individual Development in Relation to Social Contexts (Lawrence Erlbaum, 1994)

  14. Cohen, A. O. et al. When is an adolescent an adult? Assessing cognitive control in emotional and nonemotional contexts. Psychol. Sci. 27, 549–562 (2016)

    Article  PubMed  Google Scholar 

  15. Patton, G. C. et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet 387, 2423–2478 (2016).This comprehensive report describes how unprecedented global forces are shaping the health and wellbeing of the largest generation of adolescents in human history.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cohen, A. O., Bonnie, R. J., Taylor-Thompson, K. & Casey, B.J. When does a juvenile become an adult: implications for law and policy. Temp. Law Rev. 88, 769–788 (2015)

    Google Scholar 

  17. Davey, C. G., Yücel, M. & Allen, N. B. The emergence of depression in adolescence: development of the prefrontal cortex and the representation of reward. Neurosci. Biobehav. Rev. 32, 1–19 (2008)

    Article  PubMed  Google Scholar 

  18. Blakemore, S.-J. & Mills, K. L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 65, 187–207 (2014).This study describes how brain regions involved in social processing and behaviour undergo both structural changes and functional reorganization during the second decade of life, possibly reflecting a sensitive period for adapting to one’s social environment.

    Article  PubMed  Google Scholar 

  19. Blakemore, S. J. & Choudhury, S. Development of the adolescent brain: implications for executive function and social cognition. J. Child Psychol. Psychiatry 47, 296–312 (2006)

    Article  PubMed  Google Scholar 

  20. Dumontheil, I. Development of abstract thinking during childhood and adolescence: the role of rostrolateral prefrontal cortex. Dev. Cogn. Neurosci. 10, 57–76 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Water, E., Cillessen, A. H. & Scheres, A. Distinct age-related differences in temporal discounting and risk taking in adolescents and young adults. Child Dev. 85, 1881–1897 (2014)

    PubMed  Google Scholar 

  22. Gestsdottir, S., Bowers, E., von Eye, A., Napolitano, C. M. & Lerner, R. M. Intentional self regulation in middle adolescence: the emerging role of loss-based selection in positive youth development. J. Youth Adolesc. 39, 764–782 (2010)

    Article  PubMed  Google Scholar 

  23. Schwartz, S. J. & Petrova, M. Fostering healthy identity development in adolescence. Nat. Hum. Behav. https://doi.org/10.1038/s41562-017-0283-2 (2018)

    Article  Google Scholar 

  24. Suleiman, A. B ., Galván, A ., Harden, K. P. & Dahl, R. E. Becoming a sexual being: the ‘elephant in the room’of adolescent brain development. Dev. Cogn. Neurosci. 25, 209–220 (2017).This review explores the role of puberty in the social, emotional and cognitive maturation processes necessary for reproductive success, and the role of sex and romance as important developmental dimensions of health and well-being in adolescence.

    Article  PubMed  Google Scholar 

  25. Dahl, R. E. Adolescent brain development: a period of vulnerabilities and opportunities. Keynote address. Ann. NY Acad. Sci. 1021, 1–22 (2004)

    Article  PubMed  ADS  Google Scholar 

  26. United Nations. World Population Prospects, the 2012 Revision. https://esa.un.org/unpd/wpp/ (UNDESA, 2013)

  27. Bell, V., Bishop, D. V. & Przybylski, A. K. The debate over digital technology and young people. Br. Med. J. 351, h3064 (2015)

    Article  CAS  Google Scholar 

  28. Madden, M., Lenhart, A., Duggan, M., Cortesi, S. & Gasser, U. Teens and Technology 2013http://www.pewinternet.org/2013/03/13/teens-and-technology-2013/ (2016)

  29. Spies Shapiro, L. A. & Margolin, G. Growing up wired: social networking sites and adolescent psychosocial development. Clin. Child Fam. Psychol. Rev. 17, 1–18 (2014)

    Article  PubMed  Google Scholar 

  30. Smetana, J. G., Metzger, A., Gettman, D. C. & Campione-Barr, N. Disclosure and secrecy in adolescent–parent relationships. Child Dev. 77, 201–217 (2006)

    Article  PubMed  Google Scholar 

  31. Notten, N., Peter, J., Kraaykamp, G. & Valkenburg, P. M. Research note: digital divide across borders—a cross-national study of adolescents’ use of digital technologies. Eur. Sociol. Rev. 25, 551–560 (2009)

    Article  Google Scholar 

  32. Worthman, C. M. & Trang, K. Dynamics of body time, social time and life history at adolescence. Nature https://doi.org/10.1038/nature25750 (2018)

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Palan, K. M., Gentina, E. & Muratore, I. Adolescent consumption autonomy: a cross-cultural examination. J. Bus. Res. 63, 1342–1348 (2010)

    Article  Google Scholar 

  34. Stuckler, D., McKee, M., Ebrahim, S. & Basu, S. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. PLoS Med. 9, e1001235 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  35. McCarthy, K. B. M. & Hall, K. Investing when it Counts: Reviewing the Evidence and Charting a Course of Research and Action for Very Young Adolescents (Population Council, 2016). This report reviews the literature and presents a compelling case that investing in very young adolescents (ages 10–14) is important, as this is a pivotal time in the life course.

  36. World Health Organization. Global Accelerated Action for the Health of Adolescents (AA-HA!): guidance to support country implementation. http://www.who.int/maternal_child_adolescent/topics/adolescence/framework-accelerated-action/en/ (WHO, 2017)

  37. Akresh, R., Bhalotra, S., Leone, M. & Osili, U. O. War and stature: growing up during the Nigerian Civil War. Am. Econ. Rev. 102, 273–277 (2012)

    Article  Google Scholar 

  38. Holmqvist, G. & Pereira. A. Famines and stunting: Are adolescents the hardest hit? https://blogs.unicef.org/evidence-for-action/famines-and-stunting-are-adolescents-the-hardest-hit/ (Unicef, 2017)

  39. Falconi, A., Gemmill, A., Dahl, R. E. & Catalano, R. Adolescent experience predicts longevity: evidence from historical epidemiology. J. Dev. Orig. Health Dis. 5, 171–177 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Bonjour, J. P., Theintz, G., Buchs, B., Slosman, D. & Rizzoli, R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J. Clin. Endocrinol. Metab. 73, 555–563 (1991)

    Article  CAS  PubMed  Google Scholar 

  41. Mericq, V. et al. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 13, 50–62 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Drzewiecki, C. M., Willing, J. & Juraska, J. M. Synaptic number changes in the medial prefrontal cortex across adolescence in male and female rats: a role for pubertal onset. Synapse 70, 361–368 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011)

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  44. Rakic, P., Bourgeois, J. P. & Goldman-Rakic, P. S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog. Brain Res. 102, 227–243 (1994)

    Article  CAS  PubMed  Google Scholar 

  45. Benes, F. M., Vincent, S. L., Molloy, R. & Khan, Y. Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse 23, 237–245 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Cunningham, M. G., Bhattacharyya, S. & Benes, F. M. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J. Comp. Neurol. 453, 116–130 (2002)

    Article  PubMed  Google Scholar 

  47. Johnson, C. M. et al. Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence. Dev. Cogn. Neurosci. 18, 113–120 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arruda-Carvalho, M., Wu, W. C., Cummings, K. A. & Clem, R. L. Optogenetic examination of prefrontal–amygdala synaptic development. J. Neurosci. 37, 2976–2985 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larsen, B., Verstynen, T. D., Yeh, F. C. & Luna, B. Developmental changes in the integration of affective and cognitive corticostriatal pathways are associated with reward-driven behavior. Cereb. Cortex https://doi.org/10.1093/cercor/bhx162 (2017)

    Article  PubMed Central  Google Scholar 

  50. Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. Piekarski, D. J ., Boivin, J. R. & Wilbrecht, L. Ovarian hormones organize the maturation of inhibitory neurotransmission in the frontal cortex at puberty onset in female mice. Curr. Biol. 27, 1735–1745 (2017).This study provides evidence for organizational effects of ovarian hormones on the maturation of inhibitory neurotransmission in the cingulate cortex in mice, and provides experimental evidence for puberty-linked changes in learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zuo, Y., Lin, A., Chang, P. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. Baum, G. L. et al. Modular segregation of structural brain networks supports the development of executive function in youth. Curr. Biol. 27, 1561–1572 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paus, T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 72, 26–35 (2010)

    Article  PubMed  Google Scholar 

  56. Gogolla, N., Caroni, P., Lüthi, A. & Herry, C. Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Balmer, T. S., Carels, V. M., Frisch, J. L. & Nick, T. A. Modulation of perineuronal nets and parvalbumin with developmental song learning. J. Neurosci. 29, 12878–12885 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, H. H. C. et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol. Psychiatry 22, 680–688 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. Guskjolen, A., Josselyn, S. A. & Frankland, P. W. Age-dependent changes in spatial memory retention and flexibility in mice. Neurobiol. Learn. Mem. 143, 59–66 (2017)

    Article  PubMed  Google Scholar 

  60. Davidow, J. Y., Foerde, K., Galván, A. & Shohamy, D. An Upside to reward sensitivity: the hippocampus supports enhanced reinforcement learning in adolescence. Neuron 92, 93–99 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, C. & Wilbrecht, L. Juvenile mice show greater flexibility in multiple choice reversal learning than adults. Dev. Cogn. Neurosci. 1, 540–551 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  62. van den Bos, W., Cohen, M. X., Kahnt, T. & Crone, E. A. Striatum–medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cereb. Cortex 22, 1247–1255 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  63. van der Schaaf, M. E., Warmerdam, E., Crone, E. A. & Cools, R. Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: relevance for dopamine’s role in adolescent decision making. Dev. Cogn. Neurosci. 1, 578–590 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gopnik, A. et al. Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proc. Natl Acad. Sci. USA 114, 7892–7899 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lucas, C. G., Bridgers, S., Griffiths, T. L. & Gopnik, A. When children are better (or at least more open-minded) learners than adults: developmental differences in learning the forms of causal relationships. Cognition 131, 284–299 (2014)

    Article  PubMed  Google Scholar 

  66. Walker, C. M., Bridgers, S. & Gopnik, A. The early emergence and puzzling decline of relational reasoning: effects of knowledge and search on inferring abstract concepts. Cognition 156, 30–40 (2016)

    Article  PubMed  Google Scholar 

  67. Braams, B. R., van Duijvenvoorde, A. C., Peper, J. S. & Crone, E. A. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J. Neurosci. 35, 7226–7238 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, D. & Brem, S. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development. Neuroimage 104, 347–354 (2015)

    Article  PubMed  Google Scholar 

  69. Walker, D. M . et al. Adolescence and reward: making sense of neural and behavioral changes amid the chaos. J. Neurosci. 37, 10855–10866 (2017).This study describes the role pubertal hormones have in the development of adolescent social and reward-related behaviours with a focus on sex differences, the medial prefrontal cortex, mesocorticolimbic dopamine and amygdala in rodents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pfeifer, J. H. et al. Longitudinal change in the neural bases of adolescent social self-evaluations: effects of age and pubertal development. J. Neurosci. 33, 7415–7419 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nelson, E. E., Leibenluft, E., McClure, E. B. & Pine, D. S. The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol. Med. 35, 163–174 (2005)

    Article  PubMed  Google Scholar 

  72. Goddings, A. L., Burnett Heyes, S., Bird, G., Viner, R. M. & Blakemore, S. J. The relationship between puberty and social emotion processing. Dev. Sci. 15, 801–811 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  73. Somerville, L. H. et al. The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychol. Sci. 24, 1554–1562 (2013)

    Article  PubMed  Google Scholar 

  74. Stroud, L. R. et al. Stress response and the adolescent transition: performance versus peer rejection stressors. Dev. Psychopathol. 21, 47–68 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rosen, M. L. et al. Salience network response to changes in emotional expressions of others is heightened during early adolescence: relevance for social functioning. Dev. Sci. https://doi.org/10.1111/desc.12571 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Herting, M. M. & Sowell, E. R. Puberty and structural brain development in humans. Front. Neuroendocrinol. 44, 122–137 (2017)

    Article  PubMed  Google Scholar 

  77. Juraska, J. M. & Willing, J. Pubertal onset as a critical transition for neural development and cognition. Brain Res. 1654, 87–94 (2017)

  78. Sisk, C. L. Hormone-dependent adolescent organization of socio-sexual behaviors in mammals. Curr. Opin. Neurobiol. 38, 63–68 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999)

    Article  CAS  PubMed  Google Scholar 

  80. Fawcett, T. W. & Frankenhuis, W. E. Adaptive explanations for sensitive windows in development. Front. Zool. 12, S3 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  81. Insel, T. R. & Fernald, R. D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. Werker, J. F. & Hensch, T. K. Critical periods in speech perception: new directions. Annu. Rev. Psychol. 66, 173–196 (2015)

    Article  PubMed  Google Scholar 

  83. Alvarez-Buylla, A. & Kirn, J. R. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J. Neurobiol. 33, 585–601 (1997)

    Article  CAS  PubMed  Google Scholar 

  84. Kirn, J., O’Loughlin, B., Kasparian, S. & Nottebohm, F. Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc. Natl Acad. Sci. USA 91, 7844–7848 (1994)

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  85. Templeton, C. N. et al. Immediate and long-term effects of testosterone on song plasticity and learning in juvenile song sparrows. Behav. Processes 90, 254–260 (2012)

    Article  PubMed  Google Scholar 

  86. Bottjer, S. W. & Johnson, F. Circuits, hormones, and learning: vocal behavior in songbirds. J. Neurobiol. 33, 602–618 (1997)

    Article  CAS  PubMed  Google Scholar 

  87. Marler, P., Peters, S., Ball, G. F., Dufty, A. M. Jr & Wingfield, J. C. The role of sex steroids in the acquisition and production of birdsong. Nature 336, 770–772 (1988)

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Marler, P., Peters, S. & Wingfield, J. Correlations between song acquisition, song production, and plasma levels of testosterone and estradiol in sparrows. J. Neurobiol. 18, 531–548 (1987)

    Article  CAS  PubMed  Google Scholar 

  89. Remage-Healey, L., Dong, S. M., Chao, A. & Schlinger, B. A. Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J. Neurophysiol. 107, 1621–1631 (2012)

    Article  CAS  PubMed  Google Scholar 

  90. Matragrano, L. L., LeBlanc, M. M., Chitrapu, A., Blanton, Z. E. & Maney, D. L. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird. Dev. Neurobiol. 73, 455–468 (2013)

    Article  CAS  PubMed  Google Scholar 

  91. Matragrano, L. L. et al. Estradiol-dependent modulation of serotonergic markers in auditory areas of a seasonally breeding songbird. Behav. Neurosci. 126, 110–122 (2012)

    Article  CAS  PubMed  Google Scholar 

  92. Cho, K. K. et al. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/− mice. Neuron 85, 1332–1343 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. De Lorme, K. C. & Sisk, C. L. The organizational effects of pubertal testosterone on sexual proficiency in adult male Syrian hamsters. Physiol. Behav. 165, 273–277 (2016)

    Article  CAS  PubMed  Google Scholar 

  94. Cardoos, S. L. et al. Social status strategy in early adolescent girls: testosterone and value-based decision making. Psychoneuroendocrinology 81, 14–21 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. Spielberg, J. M., Olino, T. M., Forbes, E. E. & Dahl, R. E. Exciting fear in adolescence: does pubertal development alter threat processing? Dev. Cogn. Neurosci. 8, 86–95 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tyborowska, A., Volman, I., Smeekens, S., Toni, I. & Roelofs, K. Testosterone during puberty shifts emotional control from pulvinar to anterior prefrontal cortex. J. Neurosci. 36, 6156–6164 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bos, P. A., Panksepp, J., Bluthé, R. M. & van Honk, J. Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies. Front. Neuroendocrinol. 33, 17–35 (2012)

    Article  CAS  PubMed  Google Scholar 

  98. Dreher, J. C. et al. Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proc. Natl Acad. Sci. USA 113, 11633–11638 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A. & Henrich, J. Two ways to the top: evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. J. Pers. Soc. Psychol. 104, 103–125 (2013)

    Article  PubMed  Google Scholar 

  100. Chandra-Mouli, V. et al. Implications of the global early adolescent study’s formative research findings for action and for research. J. Adolesc. Health 61, S5–S9 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  101. Allen, N. B ., Latham, M. D ., Barrett, A ., Sheeber, L. & Davis, B. in Comprehensive Women’s Mental Health (eds Castle, D . & Abel, J .) 65–80 (Cambridge Univ. Press, 2016)

  102. Avenevoli, S., Swendsen, J., He, J.-P., Burstein, M. & Merikangas, K. R. Major depression in the national comorbidity survey–adolescent supplement: prevalence, correlates, and treatment. J. Am. Acad. Child Adolesc. Psychiatry 54, 37–44 (2015)

    Article  PubMed  Google Scholar 

  103. Maggs, J. L., Almeida, D. M. & Galambos, N. L. Risky business: the paradoxical meaning of problem behavior for young adolescents. J. Early Adolesc. 15, 344–362 (1995)

    Article  Google Scholar 

  104. Silbereisen, R. K. & Reitzle, M. in Self-Regulatory Behaviour and Risk Taking: Causes and Consequences (eds Lipsitt, L. P . & Mitnick, L. L. ) 199–217 (Ablex, 1991)

  105. Catalano, R. F., Hawkins, J. D., Berglund, M. L., Pollard, J. A. & Arthur, M. W. Prevention science and positive youth development: competitive or cooperative frameworks? J. Adolesc. Health 31, 230–239 (2002)

    Article  PubMed  Google Scholar 

  106. Yeager, D. S ., Dahl, R. E. & Dweck, C. S. Why interventions to influence adolescent behavior often fail but could succeed. Perspect. Psychol. Sci. 13, 101–122 (2018).This study provides a developmental perspective as to why traditional preventative school-based interventions work less well for adolescents, and reviews examples of promising approaches that take into account adolescents’ enhanced desire to feel respected and be accorded status.

    Article  PubMed  Google Scholar 

  107. Costello, E. J . & Angold, A. in Developmental Psychopathology 3rd edn (ed. Cicchetti, D. ) 1–35 (John Wiley & Sons, 2016)

  108. Suleiman, A. B. & Dahl, R. E. Leveraging neuroscience to inform adolescent health: The need for an innovative transdisciplinary developmental science of adolescence. J. Adolesc. Health 60, 240–248 (2017)

    Article  PubMed  Google Scholar 

  109. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khoury, M. J., Iademarco, M. F. & Riley, W. T. Precision public health for the era of precision medicine. Am. J. Prev. Med. 50, 398–401 (2016)

    Article  PubMed  Google Scholar 

  111. Knoll, L. J. et al. A window of opportunity for cognitive training in adolescence. Psychol. Sci. 27, 1620–1631 (2016)

    Article  PubMed  Google Scholar 

  112. Knoll, L. J., Leung, J. T., Foulkes, L. & Blakemore, S. J. Age-related differences in social influence on risk perception depend on the direction of influence. J. Adolesc. 60, 53–63 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  113. Minges, K. E. & Redeker, N. S. Delayed school start times and adolescent sleep: A systematic review of the experimental evidence. Sleep Med. Rev. 28, 86–95 (2016)

    Article  PubMed  Google Scholar 

  114. Freeman, D. et al. The effects of improving sleep on mental health (OASIS): a randomised controlled trial with mediation analysis. Lancet Psychiatry 4, 749–758 (2017)

    PubMed  Google Scholar 

  115. Okonofua, J. A., Paunesku, D. & Walton, G. M. Brief intervention to encourage empathic discipline cuts suspension rates in half among adolescents. Proc. Natl Acad. Sci. USA 113, 5221–5226 (2016)

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  116. Anderson, S. A., Classey, J. D., Condé, F., Lund, J. S. & Lewis, D. A. Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience 67, 7–22 (1995)

    Article  CAS  PubMed  Google Scholar 

  117. Gabard-Durnam, L. J. et al. The development of human amygdala functional connectivity at rest from 4 to 23 years: a cross-sectional study. Neuroimage 95, 193–207 (2014)

    Article  PubMed  Google Scholar 

  118. Willing, J., Cortes, L. R., Brodsky, J. M., Kim, T. & Juraska, J. M. Innervation of the medial prefrontal cortex by tyrosine hydroxylase immunoreactive fibers during adolescence in male and female rats. Dev. Psychobiol. 59, 583–589 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Morris, A. S., Criss, M. M., Silk, J. S. & Houltberg, B. J. The impact of parenting on emotion regulation during childhood and adolescence. Child Dev. Perspect. 11, 233–238 (2017)

    Article  Google Scholar 

  120. Schwartz, O. S., Sheeber, L. B., Dudgeon, P. & Allen, N. B. Emotion socialization within the family environment and adolescent depression. Clin. Psychol. Rev. 32, 447–453 (2012)

    Article  PubMed  Google Scholar 

  121. Whittle, S. et al. Prefrontal and amygdala volumes are related to adolescents’ affective behaviors during parent–adolescent interactions. Proc. Natl Acad. Sci. USA 105, 3652–3657 (2008)

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  122. Whittle, S. et al. Observed measures of negative parenting predict brain development during adolescence. PLoS ONE 11, e0147774 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Callaghan, B. L. et al. Amygdala resting connectivity mediates association between maternal aggression and adolescent major depression: a 7-year longitudinal study. J. Am. Acad. Child Adolesc. Psychiatry 56, 983–991 (2017)

    Article  PubMed  Google Scholar 

  124. Whittle, S. et al. Role of positive parenting in the association between neighborhood social disadvantage and brain development across adolescence. JAMA Psychiatry 74, 824–832 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yap, M. B. et al. Parents in prevention: a meta-analysis of randomized controlled trials of parenting interventions to prevent internalizing problems in children from birth to age 18. Clin. Psychol. Rev. 50, 138–158 (2016)

    Article  PubMed  Google Scholar 

  126. Richards, B. A. et al. Patterns across multiple memories are identified over time. Nat. Neurosci. 17, 981–986 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. Tompary, A. & Davachi, L. Consolidation Promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron 96, 228–241 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the leadership team of the Center on the Developing Adolescent, including A. Galvan, A. Fuligni and J. Pfeifer, who have provided important intellectual contributions through many formative discussions over the past two years—in ways that were instrumental to an integrative understanding of the developmental science of adolescence as expressed in this paper.

Author information

Authors and Affiliations

Authors

Contributions

R.E.D. and N.B.A. developed the outline of the paper. All authors drafted the manuscript, and provided critical revisions. All authors approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Nicholas B. Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks B. J. Casey and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahl, R., Allen, N., Wilbrecht, L. et al. Importance of investing in adolescence from a developmental science perspective. Nature 554, 441–450 (2018). https://doi.org/10.1038/nature25770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature25770

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing