Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Beaker phenomenon and the genomic transformation of northwest Europe

An Erratum to this article was published on 22 March 2018

This article has been updated

Abstract

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial, temporal and genetic structure of individuals in this study.
Figure 2: Investigating the genetic makeup of Beaker-complex-associated individuals.
Figure 3: Population transformation in Britain associated with the arrival of the Beaker complex.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Change history

  • 21 March 2018

    Please see accompanying Erratum (https://doi.org/10.1038/nature26164). The surname of author Alessandra Modi was incorrectly listed as ‘Mod’. The original Article has been corrected online.

References

  1. Czebreszuk, J. In Ancient Europe, 8000 b.c. to a.d. 1000: An Encyclopedia of the Barbarian World (eds Bogucki, P. I. & Crabtree, P. J. ) 476–485 (Charles Scribner’s Sons, 2004)

  2. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Czebreszuk, J. Similar But Different. Bell Beakers in Europe (Adam Mickiewicz Univ., 2004)

  6. Cardoso, J. L. Absolute chronology of the Beaker phenomenon north of the Tagus estuary: demographic and social implications. Trab. Prehist. 71, 56–75 (2014)

    Article  Google Scholar 

  7. Jeunesse, C. The dogma of the Iberian origin of the Bell Beaker: attempting its deconstruction. J. Neolit. Archaeol. 16, 158–166 (2015)

    Google Scholar 

  8. Fokkens, H. & Nicolis, F. Background to Beakers. Inquiries into Regional Cultural Backgrounds of the Bell Beaker Complex (Sidestone, 2012)

  9. Linden, M. V. What linked the Bell Beakers in third millennium bc Europe? Antiquity 81, 343–352 (2007)

    Article  Google Scholar 

  10. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valverde, L. et al. New clues to the evolutionary history of the main European paternal lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia. Eur. J. Hum. Genet. 24, 437–441 (2016)

    Article  PubMed  Google Scholar 

  15. Gamba, C. et al. Ancient DNA from an Early Neolithic Iberian population supports a pioneer colonization by first farmers. Mol. Ecol. 21, 45–56 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl Acad. Sci. USA 112, 11917–11922 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathieson, I. et al. The genomic history of southeastern Europe. Nature https://doi.org/10.1038/nature25778 (2018)

  22. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sheridan, J. A. In Landscapes in Transition (eds Finlayson, B. & Warren, G. ) 89–105 (Oxbow, 2010)

  25. Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl Acad. Sci. USA 104, 3736–3741 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke, D. L. In Glockenbecher Symposion, Oberried, 18–23 März 1974 (eds Lanting, J. N. & van DerWaals, J. D. ) 460–477 (Bussum, 1976)

  27. Clark, G. The invasion hypothesis in British archaeology. Antiquity 40, 172–189 (1966)

    Article  Google Scholar 

  28. Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 1764 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. Desideri, J. When Beakers Met Bell Beakers: an Analysis of Dental Remains (British Archaeological Reports International Series 2292) (Archaeopress, 2011)

  30. Parker Pearson, M. et al. Beaker people in Britain: migration, mobility and diet. Antiquity 90, 620–637 (2016)

    Article  Google Scholar 

  31. Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Valtueña, A. A. et al. The Stone Age plague and its persistence in Eurasia. Curr. Biol. 27, 3683–3691 (2017)

    Article  CAS  Google Scholar 

  33. Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370, 20130624 (2015)

    Article  CAS  Google Scholar 

  38. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. Behar, D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    PubMed  PubMed Central  Google Scholar 

  47. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009)

    Article  PubMed  Google Scholar 

  49. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012)

    PubMed  PubMed Central  Google Scholar 

  50. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Omrak, A. et al. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 26, 270–275 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Gallego Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gallego-Llorente, M. et al. The genetics of an early Neolithic pastoralist from the Zagros, Iran. Sci. Rep. 6, 31326 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Busing, F. M. T. A., Meijer, E. & Van Der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput. 9, 3–8 (1999)

    Article  Google Scholar 

  61. Rojo-Guerra, M. Á ., Kunst, M ., Garrido-Pena, R . & García-Martínez de Lagrán, I. & Morán-Dauchez, G. Un desafío a la eternidad. Tumbas monumentales del Valle de Ambrona (Memorias Arqueología en Castilla y León 14) (Junta de Castilla y León, 2005)

  62. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Anthony, J. Koch, I. Mathieson and C. Renfrew for comments; A. Cooper for support from the Australian Centre for Ancient DNA; the Bristol Radiocarbon Accelerator Mass Spectrometry Facility (BRAMS); A. C. Sousa, A. M. Cólliga, L. Loe, C. Roth, E. Carmona Ballesteros, M. Kunst, S.-A. Coupar, M. Giesen, T. Lord, M. Green, A. Chamberlain and G. Drinkall for assistance with samples; E. Willerslev for supporting several co-authors at the Centre for GeoGenetics; the Museo Arqueológico Regional de la Comunidad de Madrid, the Hunterian Museum, University of Glasgow, the Orkney Museum, the Museu Municipal de Torres Vedras, the Great North Museum: Hancock, the Society of Antiquaries of Newcastle upon Tyne, the Sunderland Museum, the National Museum of Wales, the Duckworth Laboratory, the Wiltshire Museum, the Wells Museum, the Brighton Museum, the Somerset Heritage Museum and the Museum of London for facilitating sample collection. Support for this project was provided by Czech Academy of Sciences grant RVO:67985912; by the Momentum Mobility Research Group of the Hungarian Academy of Sciences; by the Wellcome Trust (100713/Z/12/Z); by Irish Research Council grant GOIPG/2013/36 to D.F.; by the Heidelberg Academy of Sciences (WIN project ‘Times of Upheaval’) to P.W.S., J.K. and A.Mi.; by the Swedish Foundation for Humanities and Social Sciences grant M16-0455:1 to K.Kr.; by the National Science Centre, Poland grant DEC-2013/10/E/HS3/00141 to M.Fu.; by Obra Social La Caixa and by a Spanish MINECO grant BFU2015-64699-P to C.L.-F.; by a Spanish MINECO grant HAR2016-77600-P to C.L., P.R. and C.Bl.; by the NSF Archaeometry program BCS-1460369 to D.J.K.; by the NFS Archaeology program BCS-1725067 to D.J.K. and T.Ha.; and by an Allen Discovery Center grant from the Paul Allen Foundation, US National Science Foundation HOMINID grant BCS-1032255, US National Institutes of Health grant GM100233, and the Howard Hughes Medical Institute to D.R.

Author information

Authors and Affiliations

Authors

Contributions

S.B., M.E.A., N.R., A.S.-N., A.Mi., N.B., M.Fe., E.Har., M.Mi., J.O., K.S., O.C., D.K., F.C., R.Pi., J.K., W.H., I.B. and D.R. performed or supervised laboratory work. G.T.C. and D.J.K. undertook the radiocarbon dating of a large fraction of samples. I.A., K.Kr., A.B., K.W.A., A.A.F., E.B., M.B.-B., D.B., C.Bl., J.V.M., R.M.G., C.Bo., L.Bo., T.A., L.Bü., S.C., L.C.N., O.E.C., G.T.C., B.C., A.D., K.E.D., N.D., M.E., C.E., M.K., J.F.F., H.F., C.F., M.G., R.G.P., M.H.-U., E.Had., G.H., N.J., T.K., K.Ma., S.P., P.L., O.L., A.L., C.H.M., V.G.O., A.B.R., J.L.M., T.M., J.I.M., K.Mc., B.G.M., A.Mo., G.K., V.K., A.C., R.Pa., A.E., K.Kö., T.Ha., T.S., J.Da., Z.B., M.H., P.V., M.D., F.B., R.F.F., A.-M.H.-C., S.T., E.C., L.L., A.V., A.Z., C.W., G.D., E.G.-D., B.N., M.Br., M.Lu., R.M., J.De., M.Be., G.B., M.Fu., A.H., M.Ma., A.R., S.L., I.S., K.T.L., J.L.C., C.L., M.P.P., P.W., T.D.P., P.P., P.-J.R., P.R., R.R., M.A.R.G., A.Sc., J.S., A.M.S., V.S., L.V., J.Z., D.C., T.Hi., V.H., A.Sh., K.-G.S., P.W.S., R.Pi., J.K., W.H., I.B., C.L.-F. and D.R. assembled archaeological material. I.O., S.M., T.B., A.Mi., E.A., M.Li., I.L., N.P., Y.D., Z.F., D.F., D.J.K., P.d.K., T.K.H., M.G.T. and D.R. analysed data. I.O., C.L.-F. and D.R. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Iñigo Olalde or David Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks C. Renfrew, E. Rhodes, M. Richards and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Beaker-complex artefacts.

a, ‘All-Over-Cord’ Beaker from Bathgate, West Lothian, Scotland. Photograph: © National Museums Scotland. b, Beaker-complex grave goods from La Sima III barrow, Soria, Spain61. The set includes Beaker pots of the so-called ‘Maritime style’. Photograph: Junta de Castilla y León, Archivo Museo Numantino, Alejandro Plaza.

Extended Data Figure 2 Ancient individuals with previously published genome-wide data used in this study.

a, Sampling locations. b, Time ranges. WHG, western hunter-gatherers; EHG, eastern hunter-gatherers; SHG, Scandinavian hunter-gatherers; CHG, Caucasus hunter-gatherers; E, Early; M, Middle; L, Late; N, Neolithic; CA, Copper Age; and BA, Bronze Age. Map data from the R package ‘maps’.

Extended Data Figure 3 Population structure.

a, Principal component analysis of 990 present-day west Eurasian individuals (grey dots), with previously published (pale yellow) and new ancient samples projected onto the first two principal components. b, ADMIXTURE clustering analysis with K = 8 showing ancient individuals. WHG, western hunter-gatherers; EHG, eastern hunter-gatherers; SHG, Scandinavian hunter-gatherers; CHG, Caucasus hunter-gatherers; E, Early; M, Middle; L, Late; N, Neolithic; CA, Copper Age; and BA, Bronze Age.

Extended Data Figure 4 Hunter-gatherer affinities in Neolithic and Copper Age Europe.

Differential affinity to hunter-gatherer individuals (La Braña156 from Spain and KO162 from Hungary) in European populations before the emergence of the Beaker complex. See Supplementary Information section 8 for mixture proportions and standard errors computed with qpAdm2. E, Early; M, Middle; L, Late; N, Neolithic; CA, Copper Age; BA, Bronze Age; N_Iberia, northern Iberia; and C_Iberia, central Iberia.

Extended Data Figure 5 Modelling the relationships between Neolithic populations.

a, Admixture graph fitting a test population as a mixture of sources related to both Iberia_EN and Hungary_EN. b, Likelihood distribution for models with different proportions of the source related to Iberia_EN (green admixture edge in a) when the test population is England_N, Scotland_N or France_MLN. E, Early; M, Middle; L, Late; and N, Neolithic.

Extended Data Figure 6 Genetic affinity between Beaker-complex-associated individuals from southern England and the Netherlands.

a, f-statistics of the form f4(Mbuti, test; BK_Netherlands_Tui, BK_England_SOU). Negative values indicate that test population is closer to BK_Netherlands_Tui than to BK_England_SOU; positive values indicate that the test population is closer to BK_England_SOU than to BK_Netherlands_Tui. Error bars represent ± 3 standard errors. b, Outgroup f3-statistics of the form f3(Mbuti; BK_England_SOU, test) measuring shared genetic drift between BK_England_SOU and other Beaker-complex-associated groups. Error bars represent ± 1 standard errors. Number of individuals for each group is given in parentheses. BK_Netherlands_Tui, Beaker-complex-associated individuals from De Tuithoorn (Oostwoud, the Netherlands); BK_England_SOU, Beaker-complex-associated individuals from southern England. See Supplementary Table 1 for individuals associated with each population label.

Extended Data Figure 7 Derived allele frequencies at three SNPs of functional importance.

Error bars represent 1.9-log-likelihood support interval. The red dashed lines show allele frequencies in the 1000 Genomes Project (http://www.internationalgenome.org/) ‘GBR’ population (present-day people from Great Britain). Sample sizes are 50, 98 and 117 for Britain Neolithic, Britain Copper Age and Bronze Age, and central European Beaker-complex-associated individuals, respectively. BC, Beaker complex; CA, Copper Age; and BA, Bronze Age.

Extended Data Table 1 Sites from outside Britain with new genome-wide data reported in this study
Extended Data Table 2 Sites from Britain with new genome-wide data reported in this study
Extended Data Table 3 111 newly reported radiocarbon dates

Supplementary information

Life Sciences Reporting Summary (PDF 72 kb)

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-5, Supplementary Tables S1-S12 and Supplementary References. (PDF 6895 kb)

Supplementary Data

This file contains Supplementary Tables 1-5. Supplementary Table 1 shows the ancient individuals included in this study. Supplementary Table 2 contains mitochondrial haplogroup calls for individuals with newly reported data. Supplementary Table 3 contains mitochondrial haplogroup frequencies for relevant ancient populations. Supplementary Table 4 contains Y-chromosome calls for males with newly reported data and Supplementary Table 5 contains the radiocarbon database. (XLSX 282 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olalde, I., Brace, S., Allentoft, M. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018). https://doi.org/10.1038/nature25738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature25738

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research