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            Abstract
RAF family kinases have prominent roles in cancer1. Their activation is dependent on dimerization of their kinase domains, which has emerged as a hindrance for drug development2,3. In mammals, RAF family kinases include three catalytically competent enzymes (ARAF, BRAF and CRAF) and two pseudokinases (KSR1 and KSR2) that have been described as scaffolds owing to their apparent ability to bridge RAF isoforms and their substrate, mitogen-activated protein kinase kinase (MEK)4. Kinase suppressor of Ras (KSR) pseudokinases were also shown to dimerize with kinase-competent RAFs to stimulate catalysis allosterically5. Although GTP-bound RAS can modulate the dimerization of RAF isoforms by engaging their RAS-binding domains, KSR1 and KSR2 lack an RAS-binding domain and therefore the regulatory principles underlying their dimerization with other RAF family members remain unknown. Here we show that the selective heterodimerization of BRAF with KSR1 is specified by direct contacts between the amino-terminal regulatory regions of each protein, comprising in part a novel domain called BRS in BRAF and the coiled-coil-sterile Î± motif (CC-SAM) domain in KSR1. We also discovered that MEK binding to the kinase domain of KSR1 asymmetrically drives BRAFâ€“KSR1 heterodimerization, resulting in the concomitant stimulation of BRAF catalytic activity towards free MEK molecules. These findings demonstrate that KSRâ€“MEK complexes allosterically activate BRAF through the action of N-terminal regulatory region and kinase domain contacts and challenge the accepted role of KSR as a scaffold for MEK recruitment to RAF.
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                    Figure 1: MEK1 asymmetrically stimulates BRAFâ€“KSR1 dimerization by interacting with KSR1.


Figure 2: KSR1-activated BRAF phosphorylates KSR1-free MEK1.


Figure 3: The NTRs of KSR1 and BRAF selectively interact.


Figure 4: MEK releases the intramolecular interaction between the NTR and kinase domain of KSR1.
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Extended data figures and tables

Extended Data Figure 1 MEK levels modulate the formation of BRAFâ€“KSR1 dimers.
a, MEK1 and MEK2 expression selectively modulates BRAFâ€“KSR1 interaction but not the KRASG12Vâ€“BRAFRBD counter screen interaction by BRET. MEK1 and MEK2 expression was driven by the lentiviral vector pLX301. Error bars correspond to mean valuesâ€‰Â±â€‰s.d. of biological triplicates. b, MEK1 and MEK2 modulate BRAFâ€“KSR1 interaction by BRET. c, MEK1 stimulates BRAFâ€“KSR1 interaction in a dose-dependent manner. mCherry-tagged MEK1 was titrated in cells expressing the BRAFâ€“KSR1 BRET biosensors. d, MEK1 promotes full-length BRAFâ€“KSR1 interaction by co-IP. e, Reducing endogenous MEK1 and/or MEK2 levels by RNA interference (shMEK1 and/or shMEK2) decreases BRAFâ€“KSR1 interaction by BRET. f, Efficiency of MEK1 and MEK2 shRNA knockdowns in d. g, MEK1 stimulates BRAFâ€“KSR1 dimerization independently of its kinase activity. mCherry-tagged MEK1 or MEK1K97R similarly stimulate BRAFâ€“KSR1 interaction by BRET. Cells expressing the BRAFâ€“KSR1 BRET biosensor and increasing amounts of WT MEK1 were treated with the MEK inhibitor AZD8330 (10â€‰Î¼M). h, MEK1 stimulates BRAFâ€“KSR1 interaction independently of the phosphorylation status of Serine 218 and 222. mCherry-tagged MEK1, MEK1S218Aâ€“S222A or MEK1S218Dâ€“S222D similarly stimulate BRAFâ€“KSR1 interaction by BRET. i, and j, mCherry-tagged MEK1 selectively modulates KSR-containing dimers. The impact of MEK was measured on a series of ten biosensors comprising BRAF (h) or CRAF (i) as donor probes expressed with ARAF, BRAF, CRAF, KSR1, or KSR2 as acceptor probes. k, mCherry-tagged kinase-dead MEK1K97R selectively modulates KSR-containing dimers. The impact of MEK1K97R was measured on a series of five biosensors comprising BRAF as the donor probe expressed with ARAF, BRAF, CRAF, KSR1, or KSR2 as acceptor probes. l, mCherry-tagged interaction-defective MEK1F311S does not modulate dimerization of five biosensors comprising BRAF as the donor probe expressed with ARAF, BRAF, CRAF, KSR1, or KSR2 as acceptor probes. In c and gâ€“l, BRET log2-transformed fold-changes were reported as a function of log10-transformed mCherry relative fluorescence units. Experiments were repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 2 Identification of mutations disrupting KSRâ€“MEK and RAFâ€“MEK interactions.
a, Crystal structure of KSR2 bound to MEK1. The structure shows a heterotetrameric arrangement with two KSR2 protomers assembling as a side-to-side dimer. Each KSR2 protomer in turn interacts in a face-to-face manner with one molecule of MEK1. Zoom-in views (dashed boxes) highlight the involvement of the Î±G helices and the activation segments (AS) of both kinase domains in the face-to-face contact (Protein Data Bank accession number 2Y4I). b, Screening scheme used to identify MEK1 and KSR1 binding-defective mutants by error-prone-PCR random mutagenesis using the Y2H system. c, Yeast spotting assay showing that the F311S mutation in MEK1 helix Î±G abrogates interaction with KSR1, BRAF, and CRAF. d, Yeast spotting assay showing that KSR1 and BRAF helix Î±G mutations (W831R and I666R, respectively) disrupt their interaction with MEK1. Experiments in c and d were repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 3 Mutations in helix Î±G of MEK1 and KSR1 (F311S and W831R, respectively) do not perturb protein fold but abrogate stoichiometric assembly of the BRAFâ€“KSR1â€“MEK1 complex.
a, SECâ€“MALS analysis of MEK1 WT and F311S mutant. The horizontal black and blue lines correspond to SECâ€“MALS calculated masses for the indicated proteins. A summary table of measured and calculated molecular masses for each protein is shown below. The experiment was performed in triplicate. b, Fluorescence polarization (FP) binding analysis of MEK1 WT and F311S mutant to a 25â€‰nM fluorophore-conjugated ATP tracer (BODIPYâ€“ATP). Error bars correspond to mean valuesâ€‰Â±â€‰s.d. of technical triplicates. Indicated Kd valuesâ€‰Â±â€‰s.d. are representative of two independent experiments. c, MEK1 and MEK1 F311S expressed in HEK293T cells show equal ability to bind the ATP analogue desthiobiotin-ATP as assessed using a Pierce Kinase Enrichment Kit (Thermo-Fisher Scientific). d, e, WT KSR1 and the W831R mutant assemble to the same extent with the known interaction partners HSP90, CDC37, and 14-3-3, indicating that the protein fold of KSR1 is not overtly perturbed by the W831R mutation. Interaction partners were confirmed by mass spectrometry and by western immunoblotting. f, WT KSR1 and the W831R variant expressed in HEK293T cells show equal binding to the ATP analogue desthiobiotin-ATP as assessed using a Pierce Kinase Enrichment Kit (Thermo-Fisher Scientific). g, BRAFâ€“KSR1â€“MEK1 complexes were purified to near-homogeneity by immunoaffinity purification on anti-Flagâ€“agarose resin after treatment of the transfected cells with GDC-0879 (10â€‰Î¼M). BRAF and KSR1 form near-stoichiometric complexes in the presence of MEK1 overexpression (compare lanes 3 and 4). The KSR1 W831R mutant (lane 5) and the MEK1 F311S mutant (lane 7) but not the BRAF I666R mutant (lane 6) perturbed this near-stoichiometric interaction. Note that the BRAFâ€“KSR1â€“MEK1 complex also associates at near-stoichiometric levels with endogenous 14-3-3 isoforms. In addition, in the absence of MEK1 overexpression, appreciable but sub-stoichiometric levels of endogenous MEK are detected by immunoblotting. Protein identity was determined by mass spectrometry. Asterisks indicate the position of non-specific proteins associating with the anti-Flagâ€“agarose resin. h, The basal association of BRAFâ€“KSR1 dimers (top panel, first lane) depends on endogenous MEK. Reducing MEK1 and MEK2 levels by short hairpin RNA (shRNA) interference (combination of shMEK1 and shMEK2) decreases the amount of Pyo-KSR1 co-purifying with Flagâ€“BRAF. NT, non-target control shRNA. Experiments were repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 4 MEK1 binding to KSR1 is required for the transactivation of BRAF by side-to-side dimerization.
a, BRAF activation by KSR1 depends on an intact side-to-side dimerization surface in each protomer. Co-transfection of WT BRAF and KSR1 induces a strong pMEK signal while KSR1R665H or BRAFR509H mutants do not. b, Human KSR1 and KSR2 can both transactivate BRAF. C-terminal GFP10 fusions of KSR1 and KSR2 were co-transfected with BRAF and the resulting pMEK signal was monitored by western immunoblotting. c, Disruption of KSR1â€“MEK1 interaction with the W831R mutation perturbs BRAF transactivation by KSR1. The BRAF I666R mutation also prevents MEK phosphorylation. Similarly, MEK1F311S is not phosphorylated when co-transfected with WT BRAF and KSR1. d, Transactivation of Drosophila RAF (dRAF) by Drosophila KSR (dKSR) requires MEK binding (W896R mutation is homologous to W831R in human KSR1) and dRAFâ€“dKSR dimerization (R732H mutation is homologous to R665H in human KSR1). e, The transactivation potential of FRBâ€“dKSRKD towards FKBPâ€“dRAFKD was assessed by monitoring the levels of phosphorylated MEK in the presence or absence of rapamycin in S2 cells (1â€‰Î¼M). Blocking MEK binding to dKSR (W896R mutation) and dRAFâ€“dKSR dimerization (R732H mutation) abrogated RAF transactivation and MEK phosphorylation as judged by western immunoblotting. f, MEK phosphorylation induced by co-transfection of BRAF and KSR1 depends on the catalytic activity of BRAF and not on the integrity of the active site region of KSR1. g, KSR1 A637F (AF) and A637F/YLQE602-604>DDEE602-604 (AFDDEE) gain-of-function mutants are dependent on binding to endogenous MEK1 or MEK2 to dimerize with endogenous BRAF and to activate the cellular pool of RAF as judged by the pMEK1 or pMEK2 signal. The W831R substitution in KSR1 was used to abrogate KSR1AF and KSR1AFDDEE mutant binding to MEK. Experiments were repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 5 Identification of MEK1 mutants rescuing the interaction with KSR1W831R.
a, Screening scheme used to identify MEK1 mutants rescuing the interaction with KSR1W831R. Screening was conducted in two rounds. In round 1, MEK1 was randomly mutagenized by error-prone-PCR, which identified 16 mutants corresponding exclusively to M219V and N221Y substitutions. In round 2, saturation mutagenesis was used to test all possible residue combinations in the region encoding amino acids 219â€“221. This identified 70 mutants that either complemented the Y2H interaction on SD-TLH or on both SD-TLH and SD-TLA. Sequence diversity of the recovered mutants is summarized by sequence logos shown on the right (see Supplementary Table 2 for details of mutant sequences). After further phenotypic screening, the fittest mutant on SD-TLA corresponded to MEK1M219Wâ€“A220L. b, Position of MEK1 mutations that rescue the interaction with KSR1W831R. Mutations systematically mapped to the MEK1 activation segment between Ser218 and Ser222, which are target phosphorylation sites for RAF proteins. Multiple sequence alignments of MAP2K1-7 activation segments illustrate that residues 219â€“221 vary within the MAP2K family, suggesting that substitutions of this sequence do not drastically affect enzyme function. The M219V substitution recovered in our screen is also found at the homologous position in MAP2K3 and MAP2K6. c, MEK1 activation segment mutations MEK1M219V, MEK1N221Y, MEK1M219V/N221Y, and MEK1M219W/A220L stimulate MEK1 binding to endogenous KSR1, BRAF, and CRAF. Co-IP of Flag-tagged MEK1 variants was performed in HEK293T cells. d, MEK1M219Wâ€“A220L but not WT MEK1 stimulates KSR1W831Râ€“BRAF dimerization in BRET assays. mCherry-tagged MEK1 WT or MEK1M219Wâ€“A220L were titrated in cells expressing the BRAFâ€“KSR1W831R BRET biosensors. BRET log2(fold-changes) were reported as a function of log10-transformed mCherry relative fluorescence units. e, Strategy to distinguish activator and substrate MEK in BRAF transactivation assays. Eight repeats of a G4S flexible linker (symbolized by an octagon) were added onto WT MEK1 to separate it by size from co-transfected MEK variants lacking the linker. Experimental conditions corresponding to lanes 7 and 8 of Fig. 2d, respectively, are depicted at the top and bottom of the diagram. Experiment in e was repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 6 BRAF and KSR1 NTRs selectively interact.
a, MEK expression promotes BRAFâ€“KSR1 interaction but not CRAFâ€“KSR1 interaction. b, BRET titration experiments were used to monitor the interaction between BRAFNTR, CRAFNTR, and KSR1NTR. The indicated donor and acceptor pairs were tested for interaction in titration experiments. c, Y2H assays confirm interaction between BRAFNTR and KSR1NTR, and KSR1NTR self-association. d, Domain architecture of full-length mammalian RAF and KSR isoforms and schematic of truncations used to map the molecular determinants of BRAFNTRâ€“KSR1NTR interaction. Within the NTRs are highlighted the RBDs (orange), cysteine-rich domain (CRD; yellow), serine/threonine-rich (S/T-rich; brown) region, proline-rich (P-rich; grey) region, BRAF-specific (BRS; blue) domain, and the CC-SAM (green) domain. Co-IP results derived from multiple experiments are indicated (yes/no) with representative examples shown in e and f. e, Co-IP of Pyo-KSR1NTR with the indicated fragments of Flag-tagged BRAF. f, Co-IP of the indicated fragments of Pyo-KSR1 with Flag-tagged BRAFNTR. Experiments were repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 7 The contact surfaces between BRS and CC-SAM domains are required for the physical and functional interactions between BRAF and KSR1.
a, Phylogenetic profiling of BRAF and KSR1 domains demonstrates conservation of the BRS and CC-SAM domains throughout metazoan evolution. A concomitant loss of both domains is observed in the nematode lineage (indicated by â€˜domain lossâ€™). The conservation of each of BRAF and KSR1 domains with its human orthologue was colour-coded by BLAST E-value. RPS-BLAST was used to assess conservation of the CC-SAM domain. Conservation of the BRS was established by calculating the sum of the COILS score of amino acids located upstream of the RBD in each BRAF orthologue. b, Sequence alignment of the BRAF-specific (BRS) sequence from 14 metazoan species shows a conserved pattern of hydrophobic residues consistent with a coiled-coil region. Secondary structure elements identified in the BRS crystallographic structure are delineated above the sequence alignment. The heptad repeat (AbcDefg) typical in coiled-coil domains is shown below the alignment: positions A and D usually comprise hydrophobic amino acids while positions b, c, e, f, and g usually comprise polar or charged residues. BRS mutations used in this study are indicated by arrowheads. c, Sequence alignment of the CC-SAM sequence from 15 metazoan species. Secondary structure elements identified in the apo and BRS-bound CC-SAM structures are delineated above the sequence alignment. CC-SAM mutations used in this study are indicated by arrowheads below the alignment. Species in the phylogenetic tree and the sequence alignments are Homo sapiens, Mus musculus, Gallus gallus, Xenopus tropicalis, Danio rerio, Strongylocentrotus purpuratus, Saccoglossus kowalevskii, Lingula anatina, Lottia gigantea, Drosophila melanogaster, Anopheles gambiae, Haemonchus contortus, Dictyocaulus viviparus, Necator americanus, Caenorhabditis briggsae, Caenorhabditis brenneri, Caenorhabditis remanei, Caenorhabditis elegans, Loa loa, Brugia malayi, Bursaphelenchus xylophilus, Trichinella papuae, Trichuris trichiura, Trichuris suis, Nematostella vectensis, Amphimedon queenslandica, and Trichoplax adherens. d, Y2H mating matrix of BRAF and KSR1 NTR domains and chimaeric fusions (the dashed box indicates the interaction between isolated BRS and CC-SAM domains). e, The BRS and CC-SAM domains specifically interact as determined by BRET titration experiments. In contrast, the BRSâ€“BRS BRET pair did not generate a saturatable BRET signal. f, Swapping of the BRS and CC-SAM domains supports the BRAFâ€“KSR1 interaction and transactivation of BRAF by KSR1. Fusing the BRS domain to CRAF NTR stimulates its interaction with KSR1NTR by co-IP (g) and by Y2H (h). Experiments in dâ€“h were repeated at least three times. For gel source data, see Supplementary Fig. 1.


Extended Data Figure 8 NMR characterization of the physical interaction between the BRS and CC-SAM domains.
a, Superposition of the [1Hâ€“15N]HSQC spectra of the [15N]CC-SAM domain of human KSR1 (hCC-SAM) alone (black) and [15N]hCC-SAM in the presence of the BRS domain of human BRAF (hBRS) (green) at a 1:2 molar ratio. Binding of BRS to CC-SAM induced both CSPs and peak broadening. b, Superposition of the [1Hâ€“15N]HSQC spectra of [15N]hBRS (black) and [15N]hBRS in the presence of hCC-SAM (blue) at the indicated molar concentrations. In the [15N]hBRS HSQC spectra (black), numerous peaks are in intermediate (peak broadening) timescale conformational exchange, giving rise to only 50 visible peaks out of 84 expected. In the [15N]hBRS:hCC-SAM HSQC spectra (blue), the binding of CC-SAM to BRS increases conformational exchange to a faster time regime, giving rise to 65 visible peaks. c, CSP of the mouse KSR1 [15N]CC-SAM (mCC-SAM) domain as a function of titrated hBRS. Superposition of the [1Hâ€“15N]HSQC spectra of [15N]mCC-SAM alone (black) and [15N]mCC-SAM in the presence of hBRS (green) at the indicated molar concentrations (top left). The Kd value was calculated as the meanâ€‰Â±â€‰s.d. of five independent peak profiles (right) for which one representative CSP profile is shown (bottom left). d, CSP of the [15N]hBRS domain as a function of titrated hCC-SAM. Superposition of the [1Hâ€“15N]HSQC spectra of [15N]hBRS alone (black) and [15N]hBRS in the presence of hBRS (blue) at the indicated molar concentrations (top left). The Kd value was calculated as the meanâ€‰Â±â€‰s.d. of six independent peak profiles (right) for which one representative CSP profile is shown (bottom left). e, Superposition of the [1Hâ€“15N]HSQC spectra of the [15N]mCC-SAM alone (black) and in the presence of the hBRS (green) at a 1:2 molar ratio. Binding of hBRS to mCC-SAM induced both CSPs and peak broadening. f, Peak intensity change and CSPs versus residue number for the [1Hâ€“15N]HSQC spectra of [15N]mCC-SAM alone versus [15N]mCC-SAM with hBRS at a 1:2 molar ratio. Cut-off values indicated by the red line were calculated using the corrected s.d. method40. Vertical green and grey bars indicate residues identified as being part of the interacting surface and unassigned residues, respectively. g, Significant CSPs and peak intensity changes greater than the cut-off value determined in f are highlighted in green on the surface of the mCC-SAM domain (Protein Data Bank accession number 2LPE). Most CSPs and peak intensity changes map to the coiled-coil region of mCC-SAM. Non-shifting peaks are indicated in pale grey while unassigned peaks in the HSQC are coloured in dark grey.


Extended Data Figure 9 Crystal structures of the BRS domain and the BRS:CC-SAM complex.
a, X-ray data collection and refinement statistics table for the crystal structures of the hBRS domain and the hCCâ€“SAMâ€“hBRS complex. b, Ribbon representation of the crystal structure of the BRS domain of human BRAF. Residues comprising the hydrophobic core of the coiled-coil interactions are shown as sticks. c, Structure of the BRAF BRS and KSR1 CC-SAM domain complex. Contents of the asymmetric unit revealed two CC-SAM:BRS complexes interacting in trans. Disordered (GS)4 linker between CC-SAM and BRS domains is represented by dashed lines. The connectivity between the BRS and the CC-SAM domains was deduced as trans because in this configuration, but not the cis configuration, the C terminus of the CC-SAM domain is sufficiently close to the N terminus of the BRS domain (15â€‰Ã…) to be physically spanned by the disordered linker comprising 15 amino-acid residues. For comparison, the connection in cis would need to minimally span 80â€‰Ã…. d, Representative final 2Fo âˆ’ Fc electron density map contoured at 1.0Ïƒ for the BRS:CC-SAM complex at a region of drastic conformational rearrangement in CC-SAM relative to the isolated CC-SAM structure (indicated by the arrow). e, SECâ€“MALS analysis of the indicated crystallization fusion proteins (top). The horizontal black, red, and green lines correspond to SECâ€“MALS calculated masses for the indicated fusion proteins. Summary table (bottom) of measured and theoretical calculated molecular masses for each protein complex analysed. Experiments were performed in triplicate.


Extended Data Figure 10 Mutational and functional characterization of molecular interactions involving the NTRs and kinase domains of BRAF and KSR1.
a, Peak intensity change and CSP versus residue number for the [1Hâ€“15N]HSQC spectra of the [15N]mCC-SAM L45D mutant (black) and the [15N]mCC-SAM L45D mutant in the presence of hBRS (green) (left), the [1H,15N]HSQC spectra of the [15N]mCC-SAM C60D (black) versus [15N]mCC-SAM C60D in the presence of hBRS (green) (middle), and the [1Hâ€“15N]HSQC spectra of [15N]mCC-SAM (black) and [15N]mCC-SAM in the presence of the hBRS M53D mutant (green) (right) at the indicated molar ratio. Cut-off values indicated by the red line were calculated using the corrected s.d. method40. Residue coordinates of the CC-SAM correspond to mouse KSR1; the corresponding human CC-SAM mutations are L47D and C62D. b, The BRS and CC-SAM domains specifically interact as determined by BRET. The CC-SAM L47D and C62D mutations reduce the BRS:CC-SAM BRET binding signal. Similarly, the BRS M53D mutation disrupts the BRS:CC-SAM BRET binding signal. c, Disruption of the K88â€“E72 salt interaction disrupts BRS:CC-SAM BRET interaction. Restoring the salt bridge with reverse polarity as in the K88Eâ€“E72K mutant pair rescues complex formation. d, MEK1 expression induces the formation of full-length BRAFâ€“KSR1 heterodimers, but does not induce the formation of heterodimers between the isolated NTRs of BRAF and KSR1 as detected by co-IP. e, BRET analysis demonstrating that MEK expression promotes KSR1 kinase domain homodimerization. Helix Î±G mutations in either KSR1 (W831R) or MEK1 (F311S) abolish MEK-induced homodimerization of the KSR1 kinase domain. BRET log2-transformed fold-changes were reported as a function of log10-transformed mCherry relative fluorescence units. f, Co-IP analysis of Pyo-KSR1 with Flagâ€“KSR1 reveals that MEK1 promotes full-length KSR1 homodimerization. Experiments in bâ€“f were repeated at least three times. For gel source data, see Supplementary Fig. 1.
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        Editorial Summary
Non-catalytic role for MEK in BRAF activation
The Rasâ€“ERK signalling pathway regulates diverse cellular processes and its aberrant function is a common oncogenic driver in cancer. RAF family kinases transmit signals from activated Ras at the plasma membrane to the downstream kinases MEK and ERK and are targets for drug development. Here, Marc Therrien and colleagues use crystallography and biochemistry to explore the mechanistic details of how of BRAF is activated. They show that the BRAF substrate MEK promotes dimerization between BRAF and the pseudokinase KSR1 in a manner that is dependent on a direct interaction with KSR1 but independent of MEK kinase activity. Therefore, KSR1 functions as a MEK-dependent allosteric activator of BRAF in a feed-forward mechanism. The work also reveals a modular interaction surface between BRAF and KSR1 that may be amenable to targeting by small-molecule inhibitors.
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