Abstract
The most abundant viruses on Earth are thought to be double-stranded DNA (dsDNA) viruses that infect bacteria1. However, tailed bacterial dsDNA viruses (Caudovirales), which dominate sequence and culture collections, are not representative of the environmental diversity of viruses2,3. In fact, non-tailed viruses often dominate ocean samples numerically4, raising the fundamental question of the nature of these viruses. Here we characterize a group of marine dsDNA non-tailed viruses with short 10-kb genomes isolated during a study that quantified the diversity of viruses infecting Vibrionaceae bacteria. These viruses, which we propose to name the Autolykiviridae, represent a novel family within the ancient lineage of double jelly roll (DJR) capsid viruses. Ecologically, members of the Autolykiviridae have a broad host range, killing on average 34 hosts in four Vibrio species, in contrast to tailed viruses which kill on average only two hosts in one species. Biochemical and physical characterization of autolykiviruses reveals multiple virion features that cause systematic loss of DJR viruses in sequencing and culture-based studies, and we describe simple procedural adjustments to recover them. We identify DJR viruses in the genomes of diverse major bacterial and archaeal phyla, and in marine water column and sediment metagenomes, and find that their diversity greatly exceeds the diversity that is currently captured by the three recognized families of such viruses. Overall, these data suggest that viruses of the non-tailed dsDNA DJR lineage are important but often overlooked predators of bacteria and archaea that impose fundamentally different predation and gene transfer regimes on microbial systems than on tailed viruses, which form the basis of all environmental models of bacteria–virus interactions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Accession codes
Primary accessions
BioProject
NCBI Reference Sequence
Sequence Read Archive
References
Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000)
Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017)
Krupovic, M., Prangishvili, D., Hendrix, R. W. & Bamford, D. H. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75, 610–635 (2011)
Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013)
Benson, S. D., Bamford, J. K. H., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004)
Krupovicˇ, M. & Bamford, D. H. Archaeal proviruses TKV4 and MVV extend the PRD1-adenovirus lineage to the phylum Euryarchaeota. Virology 375, 292–300 (2008)
Pietilä, M. K. et al. Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story. Proc. Natl Acad. Sci. USA 110, 10604–10609 (2013)
Koonin, E. V., Dolja, V. V. & Krupovicˇ, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480, 2–25 (2015)
Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000)
Krupovicˇ, M. & Bamford, D. H. Virus evolution: how far does the double b-barrel viral lineage extend? Nat. Rev. Microbiol. 6, 941–948 (2008)
Krupovic, M. & Koonin, E. V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl Acad. Sci. USA 114, E2401–E2410 (2017)
Iranzo, J., Krupovic, M. & Koonin, E. V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. MBio 7, e00978–16 (2016)
International Committee on Taxonomy of Viruses. ICTV Master Species List v.1.3 https://talk.ictvonline.org/files/master-species-lists/m/msl/6776 (2016)
Brister, J. R., Ako-Adjei, D., Bao, Y. & Blinkova, O. NCBI viral genomes resource. Nucleic Acids Res. 43, D571–D577 (2015)
Espejo, R. T. & Canelo, E. S. Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology 34, 738–747 (1968)
Wommack, K. E., Hill, R. T., Kessel, M., Russek-Cohen, E. & Colwell, R. R. Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microbiol. 58, 2965–2970 (1992)
Andrews-Pfannkoch, C., Fadrosh, D. W., Thorpe, J. & Williamson, S. J. Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages. Appl. Environ. Microbiol. 76, 5039–5045 (2010)
Steward, G. F. et al. Are we missing half of the viruses in the ocean? ISME J. 7, 672–679 (2013)
Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013)
Roux, S. et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 4, e2777 (2016)
Peralta, B. et al. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol. 11, e1001667 (2013)
Sun, L. et al. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature 505, 432–435 (2014)
Saren, A.-M. et al. A snapshot of viral evolution from genome analysis of the Tectiviridae family. J. Mol. Biol. 350, 427–440 (2005)
Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4, 470–483 (2009)
Castro-Mejía, J. L. et al. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome 3, 64 (2015)
D’Herelle, F. Studies upon Asiatic cholera. Yale J. Biol. Med. 1, 195–219 (1929)
Krupovicˇ, M. & Bamford, D. H. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria. BMC Genomics 8, 236 (2007)
Xue, H. et al. Eco-evolutionary dynamics of episomes among ecologically cohesive bacterial populations. MBio 6, e00552–e15 (2015)
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015)
Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011)
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014)
Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008)
Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015)
Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)
Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016)
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016)
John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011)
Rasband, W. S. ImageJ (U.S. National Institutes of Health, 1997)
Silbert, J. A., Salditt, M. & Franklin, R. M. Structure and synthesis of a lipid-containing bacteriophage. 3. Purification of bacteriophage PM2 and some structural studies on the virion. Virology 39, 666–681 (1969)
Lawrence, J. E. & Steward, G. F. in Manual of Aquatic Viral Ecology (eds Wilhelm, S. W., Weinbauer, M. G. & Suttle, C. A. ) 166–181 (ASLO, 2010)
Kivelä, H. M., Männistö, R. H., Kalkkinen, N. & Bamford, D. H. Purification and protein composition of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262, 364–374 (1999)
Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014)
Hurwitz, B. L., Deng, L., Poulos, B. T. & Sullivan, M. B. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ. Microbiol. 15, 1428–1440 (2013)
Henn, M. R. et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS ONE 5, e9083 (2010)
Bates, D. M. lme4: Mixed-effects modeling with R. http://lme4.0.r-forge.r-project.org/lMMwR/lrgprt.pdf (2010)
Bates, D. & Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015)
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2016)
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010)
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015)
Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016)
Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002)
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015)
Hildebrand, A., Remmert, M., Biegert, A. & Söding, J. Fast and accurate automatic structure prediction with HHpred. Proteins 77, 128–132 (2009)
Alva, V., Nam, S.-Z., Söding, J. & Lupas, A. N. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44, W410–W415 (2016)
Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203 (2017)
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017)
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014)
Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011)
Guy, L., Kultima, J. R. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010)
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)
Li, W. et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43, W580–W584 (2015)
McWilliam, H. et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600 (2013)
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010)
Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017)
Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017)
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016)
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005)
Wallace, I. M., O’Sullivan, O., Higgins, D. G. & Notredame, C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699 (2006)
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009)
Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44 (D1), D286–D293 (2016)
Letunic, I. & Bork, P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007)
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Systems, 1695 (2006)
Vega Yon, G., Fabrega Lacoa, J. & Kunst, J. B. rgexf: Build, Import, and Export GEXF Graph Files. https://cran.r-project.org/web/packages/rgexf/index.html (2015)
Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res. 43, W30–W38 (2015)
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017)
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013)
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)
Marchler-Bauer, A. et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011)
Adriaenssens, E. & Brister, J. R. How to name and classify your phage: an informal guide. Viruses 9, 70 (2017)
Clerissi, C. et al. Unveiling of the diversity of prasinoviruses (Phycodnaviridae) in marine samples by using high-throughput sequencing analyses of PCR-amplified DNA polymerase and major capsid protein genes. Appl. Environ. Microbiol. 80, 3150–3160 (2014)
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015)
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017)
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016)
Anantharaman, K. et al. Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum. PeerJ 4, e1607 (2016)
Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013)
Ghai, R. et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 4, 1154–1166 (2010)
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016)
Acknowledgements
We thank J. King, P. Weigele, J. Daily and J. Chodera for comments and suggestions; T. Soni and members of the Polz laboratory for assistance with sampling; S. Labrie for guidance in viral genome extractions and sequencing library preparation, and C. Haase-Pettingell for assistance with density gradients; N. Watson for electron microscopy; and R. Ratzlaff for discussions and the suggestion of electron microscopy of virus plaques in agar overlay. This work was supported by grants from the National Science Foundation OCE 1435993 to M.F.P. and L.K., the NSF GRFP to F.A.H. and the WHOI Ocean Ventures Fund to K.M.K.
Author information
Authors and Affiliations
Contributions
K.M.K., F.A.H., L.K. and M.F.P. designed the study and planned experiments and analyses. K.M.K., L.K. and M.F.P. wrote the paper with contributions from all authors. K.M.K. conducted field sampling, isolations and experimental characterizations of lytic viruses. J.Y. conducted the statistical analyses of the viral decay experiment and wrote the scripts to visualize the infection matrix as a phylogeny-anchored network, which was based on the host ribosomal protein tree generated by P.A. W.K.C. and L.K. performed the quantification of significance of host sharing. F.A.H. performed isolation and characterization of active Vibrio DJR prophages. Bacterial genome sequencing libraries were prepared by M.B.C., assembled by P.A., and curated and annotated by P.A. and J.E. The viral genome sequencing libraries were prepared by K.M.K. and R.S.S., assembled by J.M.B. and K.M.K., and annotated and curated by J.M.B., K.M.K., J.E., W.K.C. and L.K. The viral metagenome sequencing libraries were prepared by K.M.K., and assembled and curated by P.A. and L.K. The bioinformatic analyses of microbial genomes and metagenomes for DJR capsid elements were performed by L.K. and K.M.K., and the visualization of the DJR network was performed by D.V. M.B.C. provided field and laboratory technical support throughout. Although specific contributions are highlighted for each author, all authors contributed in additional ways through contributions to figures, analyses, discussion of results and comments on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information Nature thanks J. Fuhrman, E. V. Koonin and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Figure 1 Members of the Autolykiviridae are non-tailed viruses that may form tail tubes on contact with cells.
Thin-section electron microscopy of an agar overlay containing plaques of representative Autolykiviridae virus 1.008.O (see Methods for experimental details). a, Virus particles in contact with cell membranes are observed to occasionally possess tail-tube-like structures, whereas those not in contact with cells do not. b, Lower magnification of same field of view as a shows that tail-tube-free virions are more common than those with tail tubes. c, Lower magnification view of virion in Fig. 1b also shows that the presence of the tail tube is associated with cell contact and is not observed in nearby virions.
Extended Data Figure 2 Whole-genome alignments show that the family Autolykiviridae consists of five major sequence diversity clusters.
a, Maximum Likelihood phylogeny of whole-genome nucleotide alignments of 21 autolykiviruses. Alignments were made with Clustal Omega and the phylogenetic tree was generated with PhyML-SMS with aLRT branch supports. Scale bar, substitutions per base. b, Percentage of whole-genome nucleotide identities among 21 autolykivirus genomes on the basis of the Clustal Omega alignment. Assumptions of 50% and 95% identity for genus and species classifications83, respectively, suggest that these viruses represent two genera (groups A, B, C, D and group E) and five species. Two viruses with identical genomes were isolated at time points 39 days apart (1.048.O and 1.102.O), viruses with the same number and different letter suffixes represent lineages derived from a single plaque that gave rise to variable morphotypes during serial purification.
Extended Data Figure 3 Genomes of members of the Autolykiviridae are syntenic despite extensive diversity at the nucleotide level.
Virus genomes are grouped by nucleotide similarity (as identified in Extended Data Fig. 2). Homologous proteins were identified by performing an all-by-all BLASTp, requiring a minimum bitscore of 50, and clustering all pairs unweighted, using MCL with an inflation parameter set to 1.4 (Methods), cluster membership is identified by the label over the block arrows in the genome diagram. Protein clustering reveals that in addition to the six proteins identifiable by sequence similarity as core to all characterized autolykiviruses, additional protein clusters are shared among various subsets of the identified viral genome groups. For example, in the region of the genome to the right of the major capsid protein, 17 out of 18 viruses (genome groups A, B, C and D) share a set of seven protein clusters of unknown function (c11, c12, c13, c14, c15, c16 and c17); among these viruses, two additional proteins are shared only within subsets of the genomes (c26 in genome groups A and B; c19 in genome groups C and D).
Extended Data Figure 4 Packaging and replication protein-sequence phylogenies of autolykiviruses are incongruent with respect to other known families of non-tailed dsDNA viruses.
Autolykiviruses are most similar to the corticovirus PM2 in their major capsid protein, poorly resolved in their packaging ATPase, and most similar to the tectiviruses in their protein-primed DNA polymerase. Pairwise identities and phylogenies of the protein sequences of the DJR major capsid protein (a and b), packaging ATPase (c and d) and protein primed DNA polymerase (e and f). Members of the Tectiviridae infecting Gram-positive and Gram-negative hosts are shown separately as G+ and G−, respectively. All alignments were performed using the ETE3 Toolkit with workflow eggNOG41. All trees are maximum-likelihood trees with aLRT branch supports.
Extended Data Figure 5 Sequence-diverse autolykiviruses share extensively overlapping host ranges that include diverse hosts.
a, Pairwise coinfection significance by host count. Autolykiviruses exhibit highly significant host sharing. b, Pairwise coinfection significance compared to mean pairwise genomic similarity of the host. Autolykiviruses exhibit more significant host sharing than tailed phages of comparable host diversity. a, b, Coinfection significance as defined in Methods. c, Pairwise coinfection significance compared to viral genomic similarity measured as a fraction of shared open reading frames (ORFs). Autolykiviruses exhibit more significant host sharing than tailed viruses of comparable genomic similarity. A total of 998 reciprocal pairs of tailed viruses and 236 reciprocal pairs of autolykiviruses are shown, representing all pairs of viruses within each group (141 unique tailed, 16 unique autolykiviruses) that share at least one host.
Extended Data Figure 6 Autolykiviruses show delayed host lysis compared with other viruses.
Inverted phylogenetic tree showing the relationships among all 318 assayed bacterial strains on the basis of the concatenated alignments of the hsp60 and ribosomal protein genes, and using a partitioned model in RaxML to allow placement of 40 strains for which only the hsp60 gene sequence was available (Methods). Isolates are generally non-clonal. Leaves represent Vibrionaceae isolates and are coloured by population (Methods). Nodes represent viruses and are coloured by morphotype, as defined by major capsid protein or genome composition (Methods; non-tailed in orange, tailed in blue, unsequenced viruses in grey); edges represent infections with intensity increasing with increased time required for observation of plaques. Whereas 94% of tailed virus infections were detected within three days in host range assays, only 57% of autolykivirus infections were detected in that time, with 15% requiring more than seven days to be detected.
Extended Data Figure 7 DJR elements in Vibrionaceae include naturally excising integrated prophages and broad host-range plasmids.
Prophages of representative group 5 DJR elements (Fig. 4) naturally excise from their Vibrio hosts during growth in culture. Sequencing of nuclease-treated cell-free culture supernatants reveals sharply delineated regions of high coverage read mapping with respect to host genome background, indicating the presence of extracellular nuclease-protected prophage DNA. a, V. kanaloae 5S-149 DJR prophage. b, Vibrio 10N.286.55.C7 DJR prophage. c, Genome diagrams of the excising 5S-149 DJR prophage and the nine Vibrionaceae plasmids28 that are identified here as DJR elements show that they are syntenic and all share the DJR capsid protein, packaging ATPase and the corticovirus PM2 P17-like protein. MCL clustering of proteins on the basis of the BLASTp sequence similarity reveals that additional proteins, including integrases, repressors, peptidoglycan hydrolases and replication initiation genes, are common but not universal within these elements. d, Pairwise percentage of whole-genome nucleotide identities between 5S-149 DJR prophage and the DJR Vibrionaceae plasmids show that these elements are highly diverse at the nucleotide level and that 100% nucleotide-identical 13.6-kb plasmids are found in hosts in multiple species.
Extended Data Figure 8 Network of DJR virus capsids identified in bacterial and archaeal genomes and marine metagenomes.
Iterative HMM-based searches of marine metagenomes, on the basis of a reference panel of autolykiviruses and previously identified DJR capsid bacterial and archaeal viruses, yield approximately 15,000 proteins following stringent quality control filtering of the initial approximately 45,000 sequences that were recovered. Network visualization reflects MCL clustering of BLASTp-based similarities among sequences. a, Placement of reference panel sequences within the network. b, Characterization of proteins as DJRs on the basis of sequence- and structural-similarity-based annotation. c, Best BLASTp matches to RefSeq viruses, bitscore requirement of 50. d, Association of Tara Oceans-derived sequences to size fraction of isolation. e, Subset of sequences selected for phylogenetic analyses (Fig. 4) on the basis of membership in protein clusters strongly supported as bacterial and archaeal virus DJR capsids and requiring a length of ≥200 amino acids (Methods). We note that this selection is conservative, given the greater number and diversity of sequences recovered by our HMM-based search that passed all quality controls and show no structural- or sequence-based similarity to any other proteins, and thus were excluded from further analyses. The observed dominance of eukaryotic virus DJR capsids in this search is predicted to reflect four major aspects of our approach. First, inclusion of cellular metagenomes allows capture of large viruses such as the Mimiviridae (>400?nm), Iridoviridae (120–350?nm) and Phycodnaviridae (100–220?nm). Second, some Phycodnaviridae have been shown to encode up to eight sequence-diverse copies of their DJR major capsid gene84. Third, <0.22?μm viral metagenomes are biased against recovery of bacterial and archaeal DJR viruses, as described here. And fourth, the sequence content of HMMs using iterative searches is defined by the search space, such that if eukaryotic virus DJR capsid sequences are well represented, as they are in the larger size-fraction sequence databases used here, they will drive searches towards increased detection of similar sequences.
Supplementary information
Supplementary Information
This file contains Supplementary Figure 1, a comparison of tailed virus and autolykivirus genome recovery with and without protease treatment. The uncropped source gel for Fig. 3c. (PDF 288 kb)
Supplementary Data 1
This file contains accession numbers, taxonomy, and annotation of DJR capsid proteins included in the trees and network. (XLSX 781 kb)
Supplementary Data 2
This file contains accession numbers, taxonomy, and annotation of DJR capsid proteins included in the trees and network. (XLSX 6229 kb)
Supplementary Data 3
This file contains GenBank accession numbers for newly obtained sequences and previously published genomes included in Fig. 2 and Extended Data Fig. 6. (XLSX 45 kb)
Rights and permissions
About this article
Cite this article
Kauffman, K., Hussain, F., Yang, J. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018). https://doi.org/10.1038/nature25474
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature25474