Abstract

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfβ-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Accessions

Primary accessions

European Nucleotide Archive

Gene Expression Omnibus

References

  1. 1.

    et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014)

  2. 2.

    et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008)

  3. 3.

    et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010)

  4. 4.

    et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012)

  5. 5.

    et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015)

  6. 6.

    et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015)

  7. 7.

    et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016)

  8. 8.

    et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358–366 (2017)

  9. 9.

    et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001)

  10. 10.

    et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014)

  11. 11.

    et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486, 266–270 (2012)

  12. 12.

    et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 5934–5941 (2012)

  13. 13.

    et al. A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat. Genet. 47, 47–56 (2015)

  14. 14.

    & Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013)

  15. 15.

    et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538, 378–382 (2016)

  16. 16.

    et al. Amplifications of both c-Ki-ras with a point mutation and c-myc in a primary pancreatic cancer and its metastatic tumors in lymph nodes. Jpn. J. Cancer Res. 77, 370–375 (1986)

  17. 17.

    et al. Detailed genomic mapping and expression analyses of 12p amplifications in pancreatic carcinomas reveal a 3.5-Mb target region for amplification. Genes Chromosom. Cancer 34, 211–223 (2002)

  18. 18.

    et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493–505 (2007)

  19. 19.

    et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010)

  20. 20.

    . et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010)

  21. 21.

    et al. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 24, 15–29 (2013)

  22. 22.

    et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012)

  23. 23.

    & Advanced pancreatic carcinoma: current treatment and future challenges. Nat. Rev. Clin. Oncol. 7, 163–172 (2010)

  24. 24.

    et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010)

  25. 25.

    et al. IKKα controls p52/RelB at the skp2 gene promoter to regulate G1- to S-phase progression. EMBO J. 25, 3801–3812 (2006)

  26. 26.

    et al. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J. Clin. Invest. 122, 2092–2103 (2012)

  27. 27.

    . et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 54, 3025–3033 (1994)

  28. 28.

    et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011)

  29. 29.

    et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015)

  30. 30.

    et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat. Commun. 7, 10770 (2016)

  31. 31.

    , & Exocrine pancreatic tumours and their histological classification. A study based on 167 autopsy and 97 surgical cases. Histopathology 7, 645–661 (1983)

  32. 32.

    et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J. Clin. Oncol. 27, 1806–1813 (2009)

  33. 33.

    et al. Absence of E-cadherin expression distinguishes noncohesive from cohesive pancreatic cancer. Clin. Cancer Res. 14, 412–418 (2008)

  34. 34.

    et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 66, 95–106 (2006)

  35. 35.

    et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003)

  36. 36.

    et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134, 1151–1160 (2007)

  37. 37.

    et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003)

  38. 38.

    et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001)

  39. 39.

    . et al. Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis. Model. Mech. 5, 397–402 (2012)

  40. 40.

    , , & Conditional inactivation of the TGF-β type II receptor using Cre:Lox. Genesis 32, 73–75 (2002)

  41. 41.

    , , & Improved protocols for Illumina sequencing. Curr. Protoc. Hum. Genet. 80, 18.2.1–18.2.42 (2014)

  42. 42.

    et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011)

  43. 43.

    , , & Karyotyping mouse chromosomes by multiplex-FISH (M-FISH). Chromosome Res. 9, 211–214 (2001)

  44. 44.

    et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011)

  45. 45.

    , , , & Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009)

  46. 46.

    et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012)

  47. 47.

    et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013)

  48. 48.

    , , , & The impact of amplification on differential expression analyses by RNA-seq. Sci. Rep. 6, 25533 (2016)

  49. 49.

    et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015)

  50. 50.

    , & Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)

  51. 51.

    , & Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols 4, 44–57 (2009)

  52. 52.

    et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

  53. 53.

    et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 37, D674–D679 (2009)

  54. 54.

    , & M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008)

  55. 55.

    et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015)

  56. 56.

    et al. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat. Protocols 12, 289–309 (2017)

  57. 57.

    et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl Acad. Sci. USA 108, 3665–3670 (2011)

  58. 58.

    , & Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protocols 4, 495–505 (2009)

  59. 59.

    et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl Acad. Sci. USA 112, 13982–13987 (2015)

  60. 60.

    et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012)

  61. 61.

    et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013)

  62. 62.

    et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015)

  63. 63.

    et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014)

Download references

Acknowledgements

We thank the comparative experimental pathology team for discussions, and A. Selmeier, L. Dajka, O. Seelbach, P. Meyer, T. Schmidt, J. Eichinger and T. Stauber for technical assistance as well as M. Reichert for vector constructs. The work was supported by the German Cancer Consortium Joint Funding Program, the Helmholtz Gemeinschaft (PCCC Consortium), the German Research Foundation (SFB1243; A13/A14) and the European Research Council (ERC CoG number 648521).

Author information

Author notes

    • Sebastian Mueller
    • , Thomas Engleitner
    •  & Roman Maresch

    These authors contributed equally to this work.

    • Dieter Saur
    •  & Roland Rad

    These authors jointly supervised this work.

Affiliations

  1. Center for Translational Cancer Research (TranslaTUM), Technische Universität München, 81675 Munich, Germany

    • Sebastian Mueller
    • , Thomas Engleitner
    • , Roman Maresch
    • , Magdalena Zukowska
    • , Sebastian Lange
    • , Thorsten Kaltenbacher
    • , Rupert Öllinger
    • , Barbara Seidler
    • , Nina Schönhuber
    • , Sabine Klein
    • , Christian Veltkamp
    • , Dieter Saur
    •  & Roland Rad
  2. Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany

    • Sebastian Mueller
    • , Thomas Engleitner
    • , Roman Maresch
    • , Magdalena Zukowska
    • , Sebastian Lange
    • , Thorsten Kaltenbacher
    • , Rupert Öllinger
    • , Maximilian Zwiebel
    • , Barbara Seidler
    • , Juliana Götzfried
    • , Kathleen Schuck
    • , Zonera Hassan
    • , Andreas Arbeiter
    • , Nina Schönhuber
    • , Sabine Klein
    • , Christian Veltkamp
    • , Lena Rad
    • , Maxim Barenboim
    • , Stefan Eser
    • , Roland M. Schmid
    • , Günter Schneider
    • , Dieter Saur
    •  & Roland Rad
  3. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

    • Thomas Engleitner
    • , Roman Maresch
    • , Thorsten Kaltenbacher
    • , Hsi-Yu Yen
    • , Maxim Barenboim
    • , Wilko Weichert
    • , Roland M. Schmid
    • , Günter Schneider
    • , Dieter Saur
    •  & Roland Rad
  4. Institute of Pathology, Technische Universität München, 81675 Munich, Germany

    • Björn Konukiewitz
    • , Günter Klöppel
    • , Wilko Weichert
    •  & Katja Steiger
  5. The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK

    • Alex Strong
    • , Ruby Banerjee
    • , Sandra Louzada
    • , Beiyuan Fu
    • , Mathias Friedrich
    • , Oliver M. Dovey
    • , Jorge de la Rosa
    • , Juan Cadiñanos
    • , Pentao Liu
    • , George Vassiliou
    • , Fengtang Yang
    •  & Allan Bradley
  6. Comparative Experimental Pathology, Technische Universität München, 81675 Munich, Germany

    • Hsi-Yu Yen
    •  & Katja Steiger
  7. Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians Universität, 82152 Martinsried, Germany

    • Christoph Ziegenhain
    • , Swati Parekh
    •  & Wolfgang Enard
  8. Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, 85764 Neuherberg, Germany

    • Julia Hess
    •  & Kristian Unger
  9. Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK

    • Fernando Constantino-Casas
  10. Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain

    • Jorge de la Rosa
    •  & Juan Cadiñanos
  11. Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain

    • Jorge de la Rosa
  12. Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, 33011 Oviedo, Spain

    • Marta I. Sierra
    •  & Mario Fraga
  13. Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, 33940 El Entrego, Spain

    • Mario Fraga
  14. Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, 81377 Munich, Germany

    • Julia Mayerle
  15. Instituto de Biomedicina y Biotecnología de Cantabria (UC-CSIC), 39012 Santander, Spain

    • Ignacio Varela

Authors

  1. Search for Sebastian Mueller in:

  2. Search for Thomas Engleitner in:

  3. Search for Roman Maresch in:

  4. Search for Magdalena Zukowska in:

  5. Search for Sebastian Lange in:

  6. Search for Thorsten Kaltenbacher in:

  7. Search for Björn Konukiewitz in:

  8. Search for Rupert Öllinger in:

  9. Search for Maximilian Zwiebel in:

  10. Search for Alex Strong in:

  11. Search for Hsi-Yu Yen in:

  12. Search for Ruby Banerjee in:

  13. Search for Sandra Louzada in:

  14. Search for Beiyuan Fu in:

  15. Search for Barbara Seidler in:

  16. Search for Juliana Götzfried in:

  17. Search for Kathleen Schuck in:

  18. Search for Zonera Hassan in:

  19. Search for Andreas Arbeiter in:

  20. Search for Nina Schönhuber in:

  21. Search for Sabine Klein in:

  22. Search for Christian Veltkamp in:

  23. Search for Mathias Friedrich in:

  24. Search for Lena Rad in:

  25. Search for Maxim Barenboim in:

  26. Search for Christoph Ziegenhain in:

  27. Search for Julia Hess in:

  28. Search for Oliver M. Dovey in:

  29. Search for Stefan Eser in:

  30. Search for Swati Parekh in:

  31. Search for Fernando Constantino-Casas in:

  32. Search for Jorge de la Rosa in:

  33. Search for Marta I. Sierra in:

  34. Search for Mario Fraga in:

  35. Search for Julia Mayerle in:

  36. Search for Günter Klöppel in:

  37. Search for Juan Cadiñanos in:

  38. Search for Pentao Liu in:

  39. Search for George Vassiliou in:

  40. Search for Wilko Weichert in:

  41. Search for Katja Steiger in:

  42. Search for Wolfgang Enard in:

  43. Search for Roland M. Schmid in:

  44. Search for Fengtang Yang in:

  45. Search for Kristian Unger in:

  46. Search for Günter Schneider in:

  47. Search for Ignacio Varela in:

  48. Search for Allan Bradley in:

  49. Search for Dieter Saur in:

  50. Search for Roland Rad in:

Contributions

S.M., D.S., R.R. designed the study; S.M., T.E., R.M., D.S., R.R. interpreted and visualized data; T.E., S.La., M.Zw., M.B. conducted bioinformatic analyses. S.M., T.E., R.M., S.La., M.Zw., I.V. developed bioinformatic analysis strategies; S.M., R.M., M.Zu., T.K., A.S., B.S., J.G., K.Sc., Z.H., A.A., N.S., C.V., L.R. isolated mPDAC cell cultures; S.M., R.M., J.H., K.U. performed genomics with help from R.Ö.; R.Ö., C.Z. conducted RNA-seq; R.B., S.Lo., B.F., S.K., K.St., F.Y. performed cytogenetics; B.K. performed microdissection; B.K., H.-Y.Y., G.K., W.W., K.St. performed pathological assessment; C.Z., S.P., W.E., K.U., I.V. contributed analytical tools; M.Fri., O.M.D., S.E., F.C-C., J.R., M.I.S., M.Fra., J.M., G.K., R.M.S., J.C., P.L., G.V., W.W., K.St., W.E., G.S., A.B., D.S., R.R. provided resources and critical input; D.S., R.R. supervised the study; S.M., R.R. wrote the manuscript; T.E., R.M., D.S. edited the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Roland Rad.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

PDF files

  1. 1.

    Life Sciences Reporting Summary

Zip files

  1. 1.

    Supplementary Data

    This zipped file contains Supplementary Tables 1-20 and a Supplementary Table Guide.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature25459

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.