Letter

Warfare and wildlife declines in Africa’s protected areas

  • Nature volume 553, pages 328332 (18 January 2018)
  • doi:10.1038/nature25194
  • Download Citation
Received:
Accepted:
Published:

Abstract

Large-mammal populations are ecological linchpins1, and their worldwide decline2 and extinction3 disrupts many ecosystem functions and services4. Reversal of this trend will require an understanding of the determinants of population decline, to enable more accurate predictions of when and where collapses will occur and to guide the development of effective conservation and restoration policies2,5. Many correlates of large-mammal declines are known, including low reproductive rates, overhunting, and habitat destruction2,6,7. However, persistent uncertainty about the effects of one widespread factor—armed conflict—complicates conservation-planning and priority-setting efforts5,8. Case studies have revealed that conflict can have either positive or negative local impacts on wildlife8,9,10, but the direction and magnitude of its net effect over large spatiotemporal scales have not previously been quantified5. Here we show that conflict frequency predicts the occurrence and severity of population declines among wild large herbivores in African protected areas from 1946 to 2010. Conflict was extensive during this period, occurring in 71% of protected areas, and conflict frequency was the single most important predictor of wildlife population trends among the variables that we analysed. Population trajectories were stable in peacetime, fell significantly below replacement with only slight increases in conflict frequency (one conflict-year per two-to-five decades), and were almost invariably negative in high-conflict sites, both in the full 65-year dataset and in an analysis restricted to recent decades (1989–2010). Yet total population collapse was infrequent, indicating that war-torn faunas can often recover. Human population density was also correlated (positively) with wildlife population trajectories in recent years; however, we found no significant effect, in either timespan, of species body mass, protected-area size, conflict intensity (human fatalities), drought frequency, presence of extractable mineral resources, or various metrics of development and governance. Our results suggest that sustained conservation activity in conflict zones—and rapid interventions following ceasefires—may help to save many at-risk populations and species.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016)

  2. 2.

    et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015)

  3. 3.

    & Mammal population losses and the extinction crisis. Science 296, 904–907 (2002)

  4. 4.

    et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014)

  5. 5.

    , , , & Factoring attitudes towards armed conflict risk into selection of protected areas for conservation. Nat. Commun. 7, 11042 (2016)

  6. 6.

    et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005)

  7. 7.

    , & Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009)

  8. 8.

    et al. War and wildlife: linking armed conflict to conservation. Front. Ecol. Environ. 14, 533–542 (2016)

  9. 9.

    et al. Warfare in biodiversity hotspots. Conserv. Biol. 23, 578–587 (2009)

  10. 10.

    Elephants and the war in Zimbabwe. Oryx 16, 161–164 (1981)

  11. 11.

    & Armed conflicts, 1946–2014. J. Peace Res. 52, 536–550 (2015)

  12. 12.

    , , , & Effects of war and civil strife on wildlife and wildlife habitats. Conserv. Biol. 16, 319–329 (2002)

  13. 13.

    , , & in Conserving the Peace: Resources, Livelihoods, and Security (eds et al. .) 361–383 (IISD and IUCN, 2002)

  14. 14.

    & Ecological effects of the war in Vietnam. Science 168, 544–554 (1970)

  15. 15.

    et al. Resource wars and conflict ivory: the impact of civil conflict on elephants in the Democratic Republic of Congo - the case of the Okapi Reserve. PLoS One 6, e27129 (2011)

  16. 16.

    et al. The impact of armed conflict on protected-area efficacy in Central Africa. Biol. Lett. 3, 299–301 (2007)

  17. 17.

    , , , & Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. 191, 266–273 (2015)

  18. 18.

    , & PRIO-GRID: A unified spatial data structure. J. Peace Res. 49, 363–374 (2012)

  19. 19.

    et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010)

  20. 20.

    & Introducing the UCDP Georeferenced Event Dataset. J. Peace Res. 50, 523–532 (2013)

  21. 21.

    IUCN & UNEP-WCMC. The World Database on Protected Areas (WDPA) (2014)

  22. 22.

    Model Based Inference in the Life Sciences: A Primer on Evidence (Springer, 2008)

  23. 23.

    , & The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008)

  24. 24.

    , & Human demography and reserve size predict wildlife extinction in West Africa. Proc. Biol. Sci. 268, 2473–2478 (2001)

  25. 25.

    , , , & Governance and the loss of biodiversity. Nature 426, 67–70 (2003)

  26. 26.

    , & A multiscalar global drought dataset: the SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010)

  27. 27.

    et al. Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: What are the causes? PLoS One 11, e0163249 (2016)

  28. 28.

    , , , & Multiple ecological pathways to extinction in mammals. Proc. Natl Acad. Sci. USA 106, 10702–10705 (2009)

  29. 29.

    et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016)

  30. 30.

    Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017)

  31. 31.

    et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014)

  32. 32.

    et al. Changes in elephant numbers in major savanna populations in eastern and southern Africa. Pachyderm 38, 19–28 (2005)

  33. 33.

    & UCDP GED Conflict Polygons Dataset Codebook Version 1.1-2011 (Department of Peace and Conflict Research, Uppsala Univ., 2012)

  34. 34.

    , , & Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016)

  35. 35.

    , , & Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216–9221 (2016)

  36. 36.

    , & Ethnicity and conflict: theory and facts. Science 336, 858–865 (2012)

  37. 37.

    , , , & Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–20674 (2009)

  38. 38.

    Impact of war on conservation: Rwandan environment and wildlife in agony. Biodivers. Conserv. 7, 1399–1406 (1998)

  39. 39.

    , , & in Peace Parks: Conservation and Conflict Resolution (ed. ) 109–126 (MIT Press, 2007)

  40. 40.

    et al. Game over! Wildlife collapse in northern Central African Republic. Environ. Monit. Assess. 184, 7001–7011 (2012)

  41. 41.

    , , & Introducing ACLED: an armed conflict location and event dataset special data feature. J. Peace Res. 47, 651–660 (2010)

  42. 42.

    In data we trust? A comparison of UCDP GED and ACLED conflict events datasets. Coop. Confl. 47, 124–141 (2012)

  43. 43.

    & Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998)

  44. 44.

    et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009)

  45. 45.

    Ecological, behavioral, and life-history correlates of mammal extinctions in West Africa. Conserv. Biol. 17, 733–743 (2003)

  46. 46.

    Center for International Earth Science Information Network & International Center for Tropical Agriculture. Gridded population of the world, v.3. (NASA Socioeconomic Data and Applications Center, 2005)

  47. 47.

    , , & PRIO-GRID codebook v.2.0 (Peace Research Institute Oslo, 2015)

  48. 48.

    Transparency International. Corruption Perceptions Index. (2016)

  49. 49.

    . International Country Risk Guide. (2006)

  50. 50.

    . et al. GLOBCOVER 2009-Products Description and Validation Report (Univ. Catholique de Louvain and European Space Agency, 2011)

  51. 51.

    . & Agglomeration Index: Towards a New Measure of Urban Concentration (United Nations University World Institute for Development Economics Research, 2010)

  52. 52.

    & ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003)

  53. 53.

    , , , & Rainfall influences on ungulate population abundance in the Mara–Serengeti ecosystem. J. Anim. Ecol. 77, 814–829 (2008)

  54. 54.

    Response of native ungulates to drought in semi-arid Kenyan rangeland. Afr. J. Ecol. 48, 1009–1020 (2010)

  55. 55.

    , , & Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014)

  56. 56.

    et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013)

  57. 57.

    . R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013)

  58. 58.

    Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015)

  59. 59.

    , , & Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011)

  60. 60.

    Package ‘MuMIn’: Multi-model Inference. R Package v.1.15.6 (2015)

  61. 61.

    ., ., ., & Mixed Effects Models and Extensions in Ecology with R (Springer, 2009)

  62. 62.

    & visreg: Visualization of regression models. R Package v.2.0 (2012)

  63. 63.

    ., & General-to-Specific Modeling: an Overview and Selected Bibliography (Board of Governors of the Federal Reserve System, 2005)

  64. 64.

    , & gets: General-to-Specific (GETS) modelling and indicator saturation methods. R package v.0.1. (2017)

  65. 65.

    , , & Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72, 445–463 (2002)

  66. 66.

    ., . & Landscape Ecology in Theory and Practice: Pattern and Process (Springer, 2015)

  67. 67.

    , & Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 12, 53–64 (2003)

  68. 68.

    & in Applied Regression Analysis Ch. 2 (Wiley-Interscience, 1998)

  69. 69.

    & Less than eight (and a half) misconceptions of spatial analysis. J. Biogeogr. 39, 995–998 (2012)

Download references

Acknowledgements

We thank E. Angus, C. Baker, C. Buoncore, J. Castillo Vardaro, B. Lin, A. Tilman, and the Princeton University libraries staff for assistance with data collection and analysis; D. Wilcove, S. Pacala, S. Morris, S. Budischak, J. Socolar, K. Gaynor, J. Edmond, T. Coverdale, R. Long, and U. Srinivasan provided comments. I. Craigie provided access to raw data from ref. 19, and we acknowledge the use of publically available data sources, especially from R. East, the IUCN African Elephant Specialist Group, the World Database of Protected Areas, PRIO-GRID, and GED. This work is a product of US NSF DDIG grant DEB-1501306 to J.H.D. and R.M.P. Additional support was provided by NSF DEB-1355122, DEB-1457697, and the Princeton Environmental Institute.

Author information

Author notes

    • Joshua H. Daskin

    Present Address: Department of Ecology & Evolutionary Biology and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06520, USA.

Affiliations

  1. Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA

    • Joshua H. Daskin
    •  & Robert M. Pringle

Authors

  1. Search for Joshua H. Daskin in:

  2. Search for Robert M. Pringle in:

Contributions

J.H.D. and R.M.P. conceived the research. J.H.D. designed the study, collected and curated the data, and performed all statistical analyses. R.M.P. provided input on study design, data collection, analysis, and interpretation. Both authors wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Joshua H. Daskin or Robert M. Pringle.

Reviewer Information Nature thanks I. Craigie, O. Schmitz, A. Shortland and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Tables

    This file contains Supplementary Tables 1-5.

  2. 2.

    Life Sciences Reporting Summary

Excel files

  1. 1.

    Supplementary Data 1

    Raw data for the 1946–2010 analyses. These data include for each mammal population: the country, protected area, species name, time interval (starting and ending years), λ estimate, conflict-frequency estimate, species body mass, protected-area size, spatially lagged conflict frequency estimates, national-level conflict-frequency estimate, spatial and temporal dimensions of conflict frequency, grouping of records for the bootstrap test of pseudoreplication, and the literature sources for mammal population data in each year. See Supplementary Table 5 for explanations of each column heading.

  2. 2.

    Supplementary Data 2

    Raw data for the 1989–2010 analyses. These data include for each mammal population: the country, protected area, species name, time interval (starting and ending years), λ estimate, conflict-frequency estimate, species body mass, protected-area size, human population density, Corruption Perceptions Index, conflict intensity, drought frequency, percent urban area, travel time to the nearest urban centre, presence or absence of extractable mineral resources, spatially lagged conflict frequency estimate, national-level conflict-frequency estimate, spatial and temporal dimensions of conflict frequency, grouping of records for the bootstrap test of pseudoreplication, and the literature sources for mammal population data in each year. See Supplementary Information Table 5 for explanations of each column heading.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.