Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The biology and management of non-small cell lung cancer

Abstract

Important advancements in the treatment of non-small cell lung cancer (NSCLC) have been achieved over the past two decades, increasing our understanding of the disease biology and mechanisms of tumour progression, and advancing early detection and multimodal care. The use of small molecule tyrosine kinase inhibitors and immunotherapy has led to unprecedented survival benefits in selected patients. However, the overall cure and survival rates for NSCLC remain low, particularly in metastatic disease. Therefore, continued research into new drugs and combination therapies is required to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline illustrating the development of targeted therapies and immunotherapies for the treatment of NSCLC over two decades.
Figure 2: Current and investigative treatment options for advanced or metastatic NSCLC.

References

  1. 1

    Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015)

    PubMed  Google Scholar 

  2. 2

    Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584–594 (2008)

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Alberg, A. J., Brock, M. V., Ford, J. G., Samet, J. M. & Spivack, S. D. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed.: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143, e1S–e29S (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Sun, S., Schiller, J. H. & Gazdar, A. F. Lung cancer in never smokers--a different disease. Nat. Rev. Cancer 7, 778–790 (2007)

    CAS  PubMed  Google Scholar 

  5. 5

    Vineis, P. et al. Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study. Br. Med. J. 330, 277 (2005)

    CAS  Google Scholar 

  6. 6

    Hackshaw, A. K., Law, M. R. & Wald, N. J. The accumulated evidence on lung cancer and environmental tobacco smoke. Br. Med. J. 315, 980–988 (1997)

    CAS  Google Scholar 

  7. 7

    Shahab, L. et al. Nicotine, carcinogen, and toxin exposure in long-term e-cigarette and nicotine replacement therapy users: a cross-sectional study. Ann. Intern. Med. 166, 390–400 (2017)

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Hays, J. T. & Ebbert, J. O. Varenicline for tobacco dependence. N. Engl. J. Med. 359, 2018–2024 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Brandon, T. H. et al. Electronic nicotine delivery systems: a policy statement from the American Association for Cancer Research and the American Society of Clinical Oncology. J. Clin. Oncol. 33, 952–963 (2015)

    PubMed  Google Scholar 

  10. 10

    Zhang, J. et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256–259 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007)

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2, e17 (2005)

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Reck, M. & Rabe, K. F. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N. Engl. J. Med. 377, 849–861 (2017)

    CAS  PubMed  Google Scholar 

  16. 16

    Ahrendt, S. A. et al. p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J. Natl. Cancer Inst. 95, 961–970 (2003)

    CAS  PubMed  Google Scholar 

  17. 17

    Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014)

  18. 18

    Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Koyama, S. et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 76, 999–1008 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012). References 17 and 22 are landmark genomics analyses that describe the molecular landscapes of lung adenocarcinoma and squamous cell carcinoma, respectively.

  23. 23

    Hanna, N. et al. Systemic therapy for stage IV non-small-cell lung cancer: american society of clinical oncology clinical practice guideline update. J. Clin. Oncol. 35, 3484–3515 (2017)

    CAS  PubMed  Google Scholar 

  24. 24

    Schiller, J. H. et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002)

    CAS  PubMed  Google Scholar 

  25. 25

    Scagliotti, G. V. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3543–3551 (2008)

    CAS  PubMed  Google Scholar 

  26. 26

    Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006)

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Thatcher, N. et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol. 16, 763–774 (2015)

    CAS  PubMed  Google Scholar 

  28. 28

    Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384, 665–673 (2014)

    CAS  PubMed  Google Scholar 

  29. 29

    Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet 389, 299–311 (2017)

    CAS  PubMed  Google Scholar 

  30. 30

    Goldstraw, P. et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 11, 39–51 (2016)

    PubMed  Google Scholar 

  31. 31

    Kris, M. G. et al. Adjuvant systemic therapy and adjuvant radiation therapy for stage I to IIIA completely resected non-small-cell lung cancers: American Society of Clinical Oncology/Cancer Care Ontario clinical practice guideline update. J. Clin. Oncol. 35, 2960–2974 (2017)

    PubMed  Google Scholar 

  32. 32

    Liang, H . et al. Robotic versus video-assisted lobectomy/segmentectomy for lung cancer: a meta-analysis. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002346 (2017)

    PubMed  Google Scholar 

  33. 33

    Chi, A., Chen, H., Wen, S., Yan, H. & Liao, Z. Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: A systematic review and hypothesis-generating meta-analysis. Radiother. Oncol. 123, 346–354 (2017)

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Dillman, R. O. et al. A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in stage III non-small-cell lung cancer. N. Engl. J. Med. 323, 940–945 (1990)

    CAS  PubMed  Google Scholar 

  35. 35

    Curran, W. J., Jr et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 103, 1452–1460 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008)

    CAS  PubMed  Google Scholar 

  37. 37

    Morgensztern, D., Ng, S. H., Gao, F. & Govindan, R. Trends in stage distribution for patients with non-small cell lung cancer: a National Cancer Database survey. J. Thorac. Oncol. 5, 29–33 (2010)

    PubMed  Google Scholar 

  38. 38

    Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 21, 2237–2246 (2003)

    CAS  PubMed  Google Scholar 

  39. 39

    Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. J. Am. Med. Assoc. 290, 2149–2158 (2003)

    CAS  Google Scholar 

  40. 40

    Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005)

    CAS  PubMed  Google Scholar 

  41. 41

    Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004)

    CAS  PubMed  Google Scholar 

  42. 42

    Paez, J. G . et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004). References 41 and 42 were among the first studies to demonstrate that EGFR mutations in NSCLC confer sensitivity to anti-EGFR tyrosine kinase inhibitors.

    ADS  CAS  Google Scholar 

  43. 43

    Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007)

    CAS  PubMed  Google Scholar 

  44. 44

    Kazandjian, D. et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist 21, 634–642 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. J. Am. Med. Assoc. 311, 1998–2006 (2014)

    Google Scholar 

  46. 46

    Lemmon, M. A., Schlessinger, J. & Ferguson, K. M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 6, a020768 (2014)

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Wheeler, D. L., Dunn, E. F. & Harari, P. M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol. 7, 493–507 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007)

    CAS  PubMed  Google Scholar 

  49. 49

    Mok, T. S . et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009) This study relates to a change in the era of personalized therapy, and demonstrates that an anti-EGFR tyrosine kinase inhibitor is superior to cytotoxic therapy in patients with tumours that contain an activating EGFR mutation.

    CAS  PubMed  Google Scholar 

  50. 50

    Fukuoka, M. et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol. 29, 2866–2874 (2011)

    CAS  PubMed  Google Scholar 

  51. 51

    Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010)

    CAS  PubMed  Google Scholar 

  52. 52

    Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010)

    CAS  PubMed  Google Scholar 

  53. 53

    Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    CAS  PubMed  Google Scholar 

  54. 54

    Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012)

    CAS  PubMed  Google Scholar 

  55. 55

    Paz-Ares, L. et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann. Oncol. 28, 270–277 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Wu, Y. L. et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 1454–1466 (2017)

    CAS  PubMed  Google Scholar 

  57. 57

    Yang, J. C. et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 16, 141–151 (2015)

    CAS  PubMed  Google Scholar 

  58. 58

    Okabe, T. et al. Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res. 67, 2046–2053 (2007)

    CAS  PubMed  Google Scholar 

  59. 59

    Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005)

    CAS  PubMed  Google Scholar 

  60. 60

    Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011)

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Camidge, D. R., Pao, W. & Sequist, L. V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473–481 (2014)

    CAS  PubMed  Google Scholar 

  62. 62

    Jänne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689–1699 (2015)

    PubMed  Google Scholar 

  63. 63

    Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2017)

    CAS  PubMed  Google Scholar 

  64. 64

    Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small cell lung cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1713137 (2017)

    CAS  PubMed  Google Scholar 

  65. 65

    Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Niederst, M. J. et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin. Cancer Res. 21, 3924–3933 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Jia, Y. et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534, 129–132 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Uchibori, K. et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun. 8, 14768 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lin, J. J., Riely, G. J. & Shaw, A. T. Targeting ALK: precision medicine takes on drug resistance. Cancer Discov. 7, 137–155 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Soda, M . et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007) This study describes the discovery of ALK rearrangements in NSCLC.

    ADS  CAS  PubMed  Google Scholar 

  71. 71

    Kwak, E. L . et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010) This study is the first to report the activity of crizotinib in patients with ALK rearrangements.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013)

    CAS  PubMed  Google Scholar 

  73. 73

    Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014)

    PubMed  Google Scholar 

  74. 74

    Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Shaw, A. T. et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 17, 234–242 (2016)

    CAS  PubMed  Google Scholar 

  76. 76

    Kim, D. W. et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J. Clin. Oncol. 35, 2490–2498 (2017)

    CAS  PubMed  Google Scholar 

  77. 77

    Soria, J. C. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389, 917–929 (2017)

    CAS  PubMed  Google Scholar 

  78. 78

    Hida, T. et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390, 29–39 (2017)

    CAS  PubMed  Google Scholar 

  79. 79

    Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017)

    CAS  PubMed  Google Scholar 

  80. 80

    Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Shaw, A. T. et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 18, 1590–1599 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Facchinetti, F. et al. Oncogene addiction in non-small cell lung cancer: focus on ROS1 inhibition. Cancer Treat. Rev. 55, 83–95 (2017)

    CAS  PubMed  Google Scholar 

  83. 83

    Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014)

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Lim, S. M. et al. Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring Ros1 rearrangement. J. Clin. Oncol. 35, 2613–2618 (2017)

    CAS  PubMed  Google Scholar 

  85. 85

    Awad, M. M. et al. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 368, 2395–2401 (2013)

    CAS  PubMed  Google Scholar 

  86. 86

    Davies, K. D. et al. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One 8, e82236 (2013)

    ADS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Marchetti, A. et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J. Clin. Oncol. 29, 3574–3579 (2011)

    CAS  PubMed  Google Scholar 

  88. 88

    Cardarella, S. et al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin. Can. Res. 19, 4532–4540 (2013)

    CAS  Google Scholar 

  89. 89

    Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Planchard, D. et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 642–650 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Planchard, D. et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 17, 984–993 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Frampton, G. M. et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 5, 850–859 (2015)

    CAS  PubMed  Google Scholar 

  93. 93

    Paik, P. K. et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 5, 842–849 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Awad, M. M. et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J. Clin. Oncol. 34, 721–730 (2016)

    CAS  PubMed  Google Scholar 

  95. 95

    Mazières, J. et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 31, 1997–2003 (2013)

    PubMed  Google Scholar 

  96. 96

    Mazières, J. et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann. Oncol. 27, 281–286 (2016)

    PubMed  Google Scholar 

  97. 97

    Kohno, T. et al. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med. 18, 375–377 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Drilon, A. et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 17, 1653–1660 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Gautschi, O. et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J. Clin. Oncol. 35, 1403–1410 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Hyman, D. M. et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J. Clin. Oncol. 35, LBA2501–LBA2501 (2017)

    Google Scholar 

  101. 101

    Drilon, A. et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 7, 963–972 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res. (262):3–11 (1991)

  103. 103

    Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996)

    ADS  CAS  PubMed  Google Scholar 

  104. 104

    Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002)

    CAS  PubMed  Google Scholar 

  106. 106

    Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002)

    ADS  CAS  PubMed  Google Scholar 

  107. 107

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015)

    PubMed  Google Scholar 

  109. 109

    Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Borghaei, H . et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015). References 110 and 111 were the first phase 3 studies to show increased survival for ICBs compared to cytotoxic therapy in patients with previously treated advanced-stage NSCLC, heralding the era of immunotherapy for NSCLC.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016)

    CAS  PubMed  Google Scholar 

  113. 113

    Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017)

    PubMed  Google Scholar 

  114. 114

    Reck, M . et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016). This study provides evidence that in selected patients with high tumour expression of PD-L1, ICBs are more effective than cytotoxic therapy in the first-line setting.

    CAS  PubMed  Google Scholar 

  115. 115

    Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Herbst, R. S. & Sznol, M. Diminished but not dead: chemotherapy for the treatment of NSCLC. Lancet Oncol. 17, 1464–1465 (2016)

    PubMed  Google Scholar 

  117. 117

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013)

    CAS  PubMed  Google Scholar 

  119. 119

    Langer, C. J. et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17, 1497–1508 (2016)

    CAS  PubMed  Google Scholar 

  120. 120

    Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107, 4275–4280 (2010)

    ADS  CAS  PubMed  Google Scholar 

  121. 121

    Hellmann, M. D. et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 18, 31–41 (2017)

    CAS  PubMed  Google Scholar 

  122. 122

    Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Nat. Med. 23, 1362–1368 (2017)

    Google Scholar 

  123. 123

    Bezu, L. et al. Combinatorial strategies for the induction of immunogenic cell death. Front. Immunol. 6, 187 (2015)

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Lawler, S. E., Speranza, M. C., Cho, C. F. & Chiocca, E. A. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3, 841–849 (2017)

    PubMed  Google Scholar 

  125. 125

    Voron, T. et al. Control of the immune response by pro-angiogenic factors. Front. Oncol. 4, 70 (2014)

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017)

    ADS  CAS  PubMed  Google Scholar 

  128. 128

    Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017)

    CAS  PubMed  Google Scholar 

  132. 132

    Oxnard, G. R. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 3375–3382 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Herbst, R. S. et al. Lung Master Protocol (Lung-MAP)-A biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin. Cancer Res. 21, 1514–1524 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Blakely, C. M. et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 49, 1693–1704 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Abbosh, C . et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017) This study introduces ctDNA profiling to track the subclonal nature of lung cancer progression, providing an approach for ctDNA-driven therapeutic studies.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Rizvi, N. A . et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015). This is a landmark study indicating that lung cancers with high non-synonymous mutation burden are more responsive to ICB.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017)

    ADS  CAS  PubMed  Google Scholar 

  139. 139

    Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Chen and A. M. Incassati for editorial assistance. R. Herbst is supported by the Yale SPORE in Lung Cancer (P50CA196530).

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing of this Review.

Corresponding authors

Correspondence to Roy S. Herbst or Chris Boshoff.

Ethics declarations

Competing interests

R.S.H. is a compensated advisor for Astra Zeneca, Lilly, Genentech/Roche, Pfizer and Merck (MSD). D.M. is a compensated advisor for Celgene, BMS and AbbVie. C.B. is an employee of Pfizer.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1. (PDF 91 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herbst, R., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018). https://doi.org/10.1038/nature25183

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing