Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Skin microbiota–host interactions

An Erratum to this article was published on 22 March 2018

This article has been updated

Abstract

The skin is a complex and dynamic ecosystem that is inhabited by bacteria, archaea, fungi and viruses. These microbes—collectively referred to as the skin microbiota—are fundamental to skin physiology and immunity. Interactions between skin microbes and the host can fall anywhere along the continuum between mutualism and pathogenicity. In this Review, we highlight how host–microbe interactions depend heavily on context, including the state of immune activation, host genetic predisposition, barrier status, microbe localization, and microbe–microbe interactions. We focus on how context shapes the complex dialogue between skin microbes and the host, and the consequences of this dialogue for health and disease.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crosstalk between skin microbiota and the host.
Figure 2: Chemistry of the skin.
Figure 3: Chemistry of microbial surfaces.
Figure 4: Contextual pathogenicity.

Change history

  • 25 January 2018

    In the HTML version of this Review, the two corresponding authors were incorrectly listed as Michael A. Fischbach and Y. Erin Chen, instead of Michael A. Fischbach and Yasmine Belkaid.

References

  1. 1

    De Luca, C. & Valacchi, G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010, 321494 (2010)

    PubMed  PubMed Central  Google Scholar 

  2. 2

    van Smeden, J. & Bouwstra, J. A. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 49, 8–26 (2016)

    PubMed  Google Scholar 

  3. 3

    Niyonsaba, F., Kiatsurayanon, C., Chieosilapatham, P. & Ogawa, H. Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 26, 989–998 (2017)

    CAS  PubMed  Google Scholar 

  4. 4

    Bek-Thomsen, M., Lomholt, H. B., Scavenius, C., Enghild, J. J. & Brüggemann, H. Proteome analysis of human sebaceous follicle infundibula extracted from healthy and acne-affected skin. PLoS One 9, e107908 (2014)

    ADS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lee, D.-Y. et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill propionibacterium acnes. J. Invest. Dermatol. 128, 1863–1866 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Boncheva, M. The physical chemistry of the stratum corneum lipids. Int. J. Cosmet. Sci. 36, 505–515 (2014)

    CAS  PubMed  Google Scholar 

  7. 7

    Matard, B. et al. First evidence of bacterial biofilms in the anaerobe part of scalp hair follicles: a pilot comparative study in folliculitis decalvans. J. Eur. Acad. Dermatol. Venereol. 27, 853–860 (2013)

    CAS  PubMed  Google Scholar 

  8. 8

    Puhvel, S. M., Reisner, R. M. & Amirian, D. A. Quantification of bacteria in isolated pilosebaceous follicles in normal skin. J. Invest. Dermatol. 65, 525–531 (1975)

    CAS  PubMed  Google Scholar 

  9. 9

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016)

    CAS  PubMed  Google Scholar 

  10. 10

    Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014)

    CAS  PubMed  Google Scholar 

  11. 11

    Albenberg, L. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147, 1055–1063.e8 (2014)

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Lind Due, V., Bonde, J., Kann, T. & Perner, A. Extremely low oxygen tension in the rectal lumen of human subjects. Acta Anaesthesiol. Scand. 47, 372 (2003)

    CAS  PubMed  Google Scholar 

  13. 13

    Crompton, D. W. T., Shrimpton, D. H. & Silver, I. A. Measurements of the oxygen tension in the lumen of the small intestine of the domestic duck. J. Exp. Biol. 43, 473–478 (1965)

    CAS  PubMed  Google Scholar 

  14. 14

    Strauss, J. S., Pochi, P. E. & Downing, D. T. The sebaceous glands: twenty-five years of progress. J. Invest. Dermatol. 67, 90–97 (1976)

    CAS  PubMed  Google Scholar 

  15. 15

    Nicolaides, N. Skin lipids: their biochemical uniqueness. Science 186, 19–26 (1974)

    ADS  CAS  PubMed  Google Scholar 

  16. 16

    Drake, D. R., Brogden, K. A., Dawson, D. V. & Wertz, P. W. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J. Lipid Res. 49, 4–11 (2008)

    CAS  PubMed  Google Scholar 

  17. 17

    Puhvel, S. M ., Reisner, R. M. & Sakamoto, M. Analysis of lipid composition of isolated human sebaceous gland homogenates after incubation with cutaneous bacteria. Thin-layer chromatography. J. Invest. Dermatol. 64, 406–411 (1975). This study showed that common skin bacteria, such as Cutibacterium (Propionibacterium ) species and Staphylococcus epidermidis , can modify skin lipids through hydrolysis of triglycerides and esterification of cholesterol, and that these enzymatic activities can be modified by other skin features, such as pH.

    CAS  PubMed  Google Scholar 

  18. 18

    Sanford, J. A. et al. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci. Immunol. 1, eaah4609 (2016)

    PubMed  Google Scholar 

  19. 19

    Scholz, C. F. P. & Kilian, M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 66, 4422–4432 (2016)

    PubMed  Google Scholar 

  20. 20

    Grice, E. A . et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009). Using 16S ribosomal RNA sequencing, this study provided a metagenomic analysis of the human skin microbiome and described previously unappreciated bacterial diversity at different skin sites.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Byrd, A. L. et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 9, eaal4651 (2017). This study highlights the utility of shotgun metagenomic sequencing over 16S ribosomal RNA sequencing to assess how strain differences within the same Staphylococcus epidermidis species can contribute to disease.

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Oh, J., Conlan, S., Polley, E. C., Segre, J. A. & Kong, H. H. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 4, 77 (2012)

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kong, H. H . et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012). This study was one of the first to use metagenomic sequencing to characterize dysbiosis in inflammatory skin diseases, showing that atopic dermatitis flares are associated not only with blooms of Staphylococcus aureus but also with significant decreases in overall skin microbial diversity.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Otto, M. Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat. Rev. Microbiol. 7, 555–567 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Ramsey, M. M., Freire, M. O., Gabrilska, R. A., Rumbaugh, K. P. & Lemon, K. P. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol. 7, 1230 (2016)

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Naik, S . et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012). This study demonstrated that skin-resident commensal bacteria are critical for establishing skin immune homeostasis and that this process occurs through an intact, uninflamed skin barrier.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Cebra, J. J. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69, 1046S–1051S (1999)

    CAS  PubMed  Google Scholar 

  31. 31

    Chehoud, C. et al. Complement modulates the cutaneous microbiome and inflammatory milieu. Proc. Natl Acad. Sci. USA 110, 15061–15066 (2013)

    ADS  CAS  PubMed  Google Scholar 

  32. 32

    Nagy, I. et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 8, 2195–2205 (2006)

    CAS  PubMed  Google Scholar 

  33. 33

    Christensen, G. J. M. et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 17, 152 (2016)

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017)

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Källenius, G., Correia-Neves, M., Buteme, H., Hamasur, B. & Svenson, S. B. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations. Tuberculosis (Edinb.) 96, 120–130 (2016)

    Google Scholar 

  37. 37

    Afonso-Barroso, A. et al. Lipoarabinomannan mannose caps do not affect mycobacterial virulence or the induction of protective immunity in experimental animal models of infection and have minimal impact on in vitro inflammatory responses. Cell. Microbiol. 15, 660–674 (2013)

    CAS  PubMed  Google Scholar 

  38. 38

    Briken, V., Porcelli, S. A., Besra, G. S. & Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53, 391–403 (2004)

    CAS  PubMed  Google Scholar 

  39. 39

    Chatterjee, D. & Khoo, K.-H. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8, 113–120 (1998)

    CAS  PubMed  Google Scholar 

  40. 40

    Dao, D. N. et al. Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun. 72, 2067–2074 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Doz, E. et al. Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J. Biol. Chem. 282, 26014–26025 (2007)

    CAS  PubMed  Google Scholar 

  42. 42

    Fukuda, T. et al. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. MBio 4, e00472–e12 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Ishikawa, E., Mori, D. & Yamasaki, S. Recognition of mycobacterial lipids by immune receptors. Trends Immunol. 38, 66–76 (2017)

    CAS  PubMed  Google Scholar 

  44. 44

    Bomar, L., Brugger, S. D., Yost, B. H., Davies, S. S. & Lemon, K. P. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. MBio 7, e01725–e15 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell (in the press)

  47. 47

    Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006)

    CAS  PubMed  Google Scholar 

  48. 48

    Metze, D. et al. Immunohistochemical demonstration of immunoglobulin A in human sebaceous and sweat glands. J. Invest. Dermatol. 92, 13–17 (1989)

    ADS  CAS  PubMed  Google Scholar 

  49. 49

    Okada, T., Konishi, H., Ito, M., Nagura, H. & Asai, J. Identification of secretory immunoglobulin A in human sweat and sweat glands. J. Invest. Dermatol. 90, 648–651 (1988). This study used immunohistochemistry to show that secretory IgA was associated with human sweat glands, and was probably being actively transported in a way similar to the intestine. This study raises the question of how IgA on the skin influences microbiota composition and whether commensal microbes stimulate IgA secretion similarly to gut commensal flora.

    CAS  PubMed  Google Scholar 

  50. 50

    Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002)

    ADS  CAS  PubMed  Google Scholar 

  51. 51

    Macpherson, A. J., Hunziker, L., McCoy, K. & Lamarre, A. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect. 3, 1021–1035 (2001)

    CAS  PubMed  Google Scholar 

  52. 52

    Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012)

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    van der Waaij, L. A., Limburg, P. C., Mesander, G. & van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38, 348–354 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Shroff, K. E., Meslin, K. & Cebra, J. J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63, 3904–3913 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004)

    ADS  CAS  PubMed  Google Scholar 

  56. 56

    Vossenkämper, A. et al. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J. Exp. Med. 210, 1665–1674 (2013)

    PubMed  PubMed Central  Google Scholar 

  57. 57

    O’Riordan, K. & Lee, J. C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234 (2004)

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Cheng, B. L. et al. Evaluation of serotypes 5 and 8 capsular polysaccharides in protection against Staphylococcus aureus in murine models of infection. Hum. Vaccin. Immunother. 13, 1609–1614 (2017)

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Zimmermann, M. & Fischbach, M. A. A family of pyrazinone natural products from a conserved nonribosomal peptide synthetase in Staphylococcus aureus. Chem. Biol. 17, 925–930 (2010)

    CAS  PubMed  Google Scholar 

  60. 60

    Wyatt, M. A. et al. Staphylococcus aureus nonribosomal peptide secondary metabolites regulate virulence. Science 329, 294–296 (2010)

    ADS  CAS  PubMed  Google Scholar 

  61. 61

    Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Scharschmidt, T. C. et al. Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin. Cell Host Microbe 21, 467–477.e5 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Loesche, M. et al. Temporal stability in chronic wound microbiota is associated with poor healing. J. Invest. Dermatol. 137, 237–244 (2017)

    CAS  PubMed  Google Scholar 

  65. 65

    Kalan, L. et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio 7, e01058–e16 (2016)

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Feingold, K. R. The outer frontier: the importance of lipid metabolism in the skin. J. Lipid Res. 50 (Suppl), S417–S422 (2009)

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Brandner, J. M. Importance of tight junctions in relation to skin barrier function. Curr. Probl. Dermatol. 49, 27–37 (2016)

    PubMed  Google Scholar 

  68. 68

    Natsuga, K. Epidermal barriers. Cold Spring Harb. Perspect. Med. 4, a018218 (2014)

    PubMed  PubMed Central  Google Scholar 

  69. 69

    McLean, W. H. I . Filaggrin failure—from ichthyosis vulgaris to atopic eczema and beyond. Br. J. Dermatol. 175 (Suppl 2), 4–7 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Madison, K. C. Barrier function of the skin: “la raison d’être” of the epidermis. J. Invest. Dermatol. 121, 231–241 (2003)

    CAS  PubMed  Google Scholar 

  71. 71

    Cleaver, J. E. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J. Dermatol. Sci. 23, 1–11 (2000)

    CAS  PubMed  Google Scholar 

  72. 72

    Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Has, C. & Bruckner-Tuderman, L. The genetics of skin fragility. Annu. Rev. Genomics Hum. Genet. 15, 245–268 (2014)

    CAS  PubMed  Google Scholar 

  74. 74

    Capell, B. C., Tlougan, B. E. & Orlow, S. J. From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J. Invest. Dermatol. 129, 2340–2350 (2009)

    CAS  PubMed  Google Scholar 

  75. 75

    Totté, J. E. et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br. J. Dermatol. 175, 687–695 (2016)

    PubMed  Google Scholar 

  76. 76

    Totté, J. E. E. et al. A systematic review and meta-analysis on Staphylococcus aureus carriage in psoriasis, acne and rosacea. Eur. J. Clin. Microbiol. Infect. Dis. 35, 1069–1077 (2016)

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Huang, J. T., Abrams, M., Tlougan, B., Rademaker, A. & Paller, A. S. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 123, e808–e814 (2009)

    PubMed  Google Scholar 

  78. 78

    Kobayashi, T . et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42, 756–766 (2015). This study demonstrated potential mechanistic links between dysbiotic skin flora and inflammation in atopic dermatitis by using a mouse model of eczema with ADAM17 deficiency that recapitulates spontaneous development of dysbiotic flora and skin inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Leyden, J. J ., Marples, R. R. & Kligman, A. M. Staphylococcus aureus in the lesions of atopic dermatitis. Br. J. Dermatol. 90, 525–530 (1974). This was one of the first studies to demonstrate abundant Staphylococcus aureus colonization of patients with atopic dermatitis, even in areas of normal-appearing skin, and established the concept that colonizing microbes can have pathogenic effects without overt infection.

    CAS  PubMed  Google Scholar 

  80. 80

    Conti, F. et al. Association between Staphylococcus aureus nasal carriage and disease phenotype in patients affected by systemic lupus erythematosus. Arthritis Res. Ther. 18, 177 (2016)

    PubMed  PubMed Central  Google Scholar 

  81. 81

    Nakagawa, S. et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe 22, 667–677.e5 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Liu, H. et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe 22, 653–666.e5 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010)

    CAS  PubMed  Google Scholar 

  84. 84

    de Haas, C. J. C. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Luong, T. T. & Lee, C. Y. Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect. Immun. 70, 3389–3395 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Uhlén, M. et al. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259, 1695–1702 (1984)

    PubMed  Google Scholar 

  87. 87

    Palmqvist, N., Patti, J. M., Tarkowski, A. & Josefsson, E. Expression of staphylococcal clumping factor A impedes macrophage phagocytosis. Microbes Infect. 6, 188–195 (2004)

    CAS  PubMed  Google Scholar 

  88. 88

    Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999)

    CAS  PubMed  Google Scholar 

  89. 89

    Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005)

    CAS  PubMed  Google Scholar 

  90. 90

    Rooijakkers, S. H. M. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005)

    CAS  PubMed  Google Scholar 

  91. 91

    Sonesson, A. et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci. Rep. 7, 8689 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Zhang, L. J . et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347, 67–71 (2015). This study showed that adipogenesis and adipocyte production of AMPs help to protect against Staphylococcus aureus infection via intradermal injection, demonstrating that in addition to keratinocytes and sebocytes, subcutaneous tissues can participate in the immue response to microbes.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Joshi, G. S., Spontak, J. S., Klapper, D. G. & Richardson, A. R. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol. Microbiol. 82, 9–20 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Thurlow, L. R. et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13, 100–107 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Wentworth, A. B., Drage, L. A., Wengenack, N. L., Wilson, J. W. & Lohse, C. M. Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: a population-based study. Mayo Clin. Proc. 88, 38–45 (2013)

    PubMed  Google Scholar 

  96. 96

    Merritt, R. W. et al. Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl. Trop. Dis. 4, e911 (2010)

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Houben, R. M. G. J. & Dodd, P. J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13, e1002152 (2016)

    PubMed  PubMed Central  Google Scholar 

  98. 98

    World Health Organization. Global Tuberculosis Report 2016; http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1 (2016)

  99. 99

    Haley, C. A. Treatment of latent tuberculosis infection. Microbiol. Spectr. 5, TNMI7-0039–2016 (2017)

    Google Scholar 

  100. 100

    Sehgal, V. N. Leprosy. Dermatol. Clin. 12, 629–644 (1994)

    CAS  PubMed  Google Scholar 

  101. 101

    Talhari, C., Talhari, S. & Penna, G. O. Clinical aspects of leprosy. Clin. Dermatol. 33, 26–37 (2015)

    PubMed  Google Scholar 

  102. 102

    GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017)

  103. 103

    Wansbrough-Jones, M. & Phillips, R. Buruli ulcer: emerging from obscurity. Lancet 367, 1849–1858 (2006)

    PubMed  Google Scholar 

  104. 104

    Marion, E . et al. Mycobacterial toxin induces analgesia in Buruli ulcer by targeting the angiotensin pathways. Cell 157, 1565–1576 (2014). This study shows that mycolactone, a virulence factor produced by the cutaneous pathogen Mycobacterium ulcerans , causes analgesia by directly binding to the angiotensin II receptor on nerve cells and triggering downstream potassium channel activation and resultant cell hyperpolarization.

    CAS  PubMed  Google Scholar 

  105. 105

    Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015). This study shows that neurons can participate directly in the immune response to microbes. Cutaneous sensory neurons are directly activated by Candida albicans and subsequently stimulate dermal dendritic cells to produce IL-23, thus driving protective immunity by IL-17A-producing dermal T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Fung, T. C. et al. Lymphoid tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 44, 634–646 (2016)

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Horsburgh, C. R. J., Jr. Priorities for the treatment of latent tuberculosis infection in the United States. N. Engl. J. Med. 350, 2060–2067 (2004)

    CAS  PubMed  Google Scholar 

  113. 113

    Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Cunningham, A. F. & Spreadbury, C. L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J. Bacteriol. 180, 801–808 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Rittershaus, E. S. C., Baek, S.-H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Bartek, I. L. et al. Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio 5, e01106–e01114 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Eoh, H. et al. Metabolic anticipation in Mycobacterium tuberculosis. Nat. Microbiol. 2, 201784 (2017)

    Google Scholar 

  119. 119

    Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014)

    CAS  PubMed  Google Scholar 

  121. 121

    Hannigan, G. D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6, e01578–e15 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Hickman, H. D . et al. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe 13, 155–168 (2013). This study used intravital multiphoton microscopy to demonstrate that effector CD8+ T cells respond to cutaneous vaccinia virus infection by killing infected monocytes in the periphery but not infected keratinocytes in the center, thus highlighting the spatial complexity and specificity of immune cell dynamics in the skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Cush, S. S. et al. Locally produced IL-10 limits cutaneous vaccinia virus spread. PLoS Pathog. 12, e1005493 (2016)

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Carbone, F. R. Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs. J. Immunol. 195, 17–22 (2015)

    CAS  PubMed  Google Scholar 

  125. 125

    Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013)

    CAS  PubMed  Google Scholar 

  126. 126

    Lanas, A. & Chan, F. K. L. Peptic ulcer disease. Lancet 390, 613–624 (2017)

    PubMed  Google Scholar 

  127. 127

    Kalisperati, P. et al. Inflammation, DNA damage, Helicobacter pylori and gastric tumorigenesis. Front. Genet. 8, 20 (2017)

    PubMed  PubMed Central  Google Scholar 

  128. 128

    Peek, R. M., Jr & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28–37 (2002)

    CAS  PubMed  Google Scholar 

  129. 129

    Kienesberger, S. et al. Gastric Helicobacter pylori infection affects local and distant microbial populations and host responses. Cell Reports 14, 1395–1407 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Lehman, H. Skin manifestations of primary immune deficiency. Clin. Rev. Allergy Immunol. 46, 112–119 (2014)

    CAS  PubMed  Google Scholar 

  131. 131

    Barnard, E., Shi, B., Kang, D., Craft, N. & Li, H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci. Rep. 6, 39491 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Agak, G. W. et al. Propionibacterium acnes Induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J. Invest. Dermatol. 134, 366–373 (2014)

    CAS  PubMed  Google Scholar 

  133. 133

    Fitz-Gibbon, S. et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Invest. Dermatol. 133, 2152–2160 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Ring, H. C. et al. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatol. 153, 897–905 (2017)

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Wollenberg, M. S. et al. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio 5, e01286–e14 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Shu, M. et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One 8, e55380 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007)

    ADS  CAS  PubMed  Google Scholar 

  138. 138

    Yager, E. J. et al.. γ-Herpesvirus-induced protection against bacterial infection is transient. Viral Immunol. 22, 67–72 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Perry, S. et al. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS One 5, e8804 (2010)

    ADS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest. 121, 3088–3093 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Cheung, G. Y. C. & Otto, M. Understanding the significance of Staphylococcus epidermidis bacteremia in babies and children. Curr. Opin. Infect. Dis. 23, 208–216 (2010)

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Rohlke, F. & Stollman, N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap. Adv. Gastroenterol. 5, 403–420 (2012)

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Panigrahi, P . et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412 (2017). This study was the first, to our knowledge, to use an oral synbiotic ( Lactobacillus plantarum and fructooligosaccharide) to promote effective gut colonization of the inoculated bacterium and reduce neonatal sepsis.

    ADS  CAS  PubMed  Google Scholar 

  144. 144

    Nakatsuji, T. et al. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating β-defensin-2 expression. J. Invest. Dermatol. 130, 985–994 (2010)

    CAS  PubMed  Google Scholar 

  145. 145

    Falchook, G. S. et al. Responses of metastatic basal cell and cutaneous squamous cell carcinomas to anti-PD1 monoclonal antibody REGN2810. J. Immunother. Cancer 4, 70 (2016)

    PubMed  PubMed Central  Google Scholar 

  146. 146

    Morris, V. K. et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol. 18, 446–453 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Mahoney, K. M., Freeman, G. J. & McDermott, D. F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. 37, 764–782 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Cassler, N. M. & Brownell, I. PD-1 checkpoint blockade is an emerging treatment for Merkel cell carcinoma. Br. J. Dermatol. 176, 18 (2017)

    CAS  PubMed  Google Scholar 

  149. 149

    Sivan, A . et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). This study and the next one demonstrated that the gut microbial composition can alter immunotherapies at distant sites, suggesting that microbe–immune interactions at barrier sites can have far-reaching effects at other barrier sites or systemically.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Golden, J. B. et al. Chronic, not acute, skin-specific inflammation promotes thrombosis in psoriasis murine models. J. Transl. Med. 13, 382 (2015)

    PubMed  PubMed Central  Google Scholar 

  152. 152

    Santilli, S. et al. Visualization of atherosclerosis as detected by coronary artery calcium and carotid intima-media thickness reveals significant atherosclerosis in a cross-sectional study of psoriasis patients in a tertiary care center. J. Transl. Med. 14, 217 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Wang, Y . et al. Chronic skin-specific inflammation promotes vascular inflammation and thrombosis. J. Invest. Dermatol. 132, 2067–2075 (2012). This study used a mouse model of psoriasis (keratinocyte-specific Tie2 transgene expression) to mechanistically link skin inflammation to the development of resultant aortic root inflammation and also to show that subsequent treatment of the skin disease can eliminate not only skin inflammation but also systemic vascular inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Evensen, K. et al. Increased subclinical atherosclerosis in patients with chronic plaque psoriasis. Atherosclerosis 237, 499–503 (2014)

    CAS  PubMed  Google Scholar 

  155. 155

    Tomura, M. et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 120, 883–893 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Tomura, M. et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep. 4, 6030 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Geherin, S. A. et al. The skin, a novel niche for recirculating B cells. J. Immunol. 188, 6027–6035 (2012). This study was one of the first to demonstrate that B cells actively traffic in and out of the skin, even in uninflamed skin, suggesting that B cells play an active and previously underappreciated role in skin homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Belkaid, Y. & Segre, J. A. Dialogue between skin microbiota and immunity. Science 346, 954–959 (2014)

    ADS  CAS  PubMed  Google Scholar 

  159. 159

    Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Nithya, S., Radhika, T. & Jeddy, N. Loricrin—an overview. J. Oral Maxillofac. Pathol. 19, 64–68 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Iguchi, A. et al. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res. 22, 101–107 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for not having cited all papers relevant to this expanding field of research (in particular, older literature) because of space constraints and editorial limits. This work was supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Y.B.), DP1 DK113598 (M.A.F.), R01 DK110174 (M.A.F.), an HHMI-Simons Faculty Scholars Award (M.A.F.), a Fellowship for Science and Engineering from the David and Lucile Packard Foundation (M.A.F.), a Burroughs Wellcome Investigators in the Pathogenesis of Infectious Disease Award (M.A.F.) and the Dermatology Foundation (Y.E.C.).

Author information

Affiliations

Authors

Contributions

Y.E.C., M.A.F. and Y.B. conceptualized the article structure, content, and figures, and wrote and edited the manuscript and figures.

Corresponding authors

Correspondence to Michael A. Fischbach or Yasmine Belkaid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks T. Scharschmidt and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fischbach, M. & Belkaid, Y. Skin microbiota–host interactions. Nature 553, 427–436 (2018). https://doi.org/10.1038/nature25177

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing