Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans

Abstract

Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved1,2,3,4,5. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka)6. Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans1,7,8. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’9. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos1, Inuits or Kets10, and that Native American gene flow into Inuits was through northern and not southern Native American groups1. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic affinities between USR1, present-day Native Americans and world-wide populations.
Figure 2: Possible geographic locations for the USR1 and NNA–SNA splits.
Figure 3: A model for the formation of the different Native American populations.
Figure 4: USR1 demographic history in the context of East Asians, Siberians and other Native Americans.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  2. Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104–108 (2015)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  4. von Cramon-Taubadel, N., Strauss, A. & Hubbe, M. Evolutionary population history of early Paleoamerican cranial morphology. Sci. Adv. 3, e1602289 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Hoffecker, J. F., Elias, S. A., O’Rourke, D. H., Scott, G. R. & Bigelow, N. H. Beringia and the global dispersal of modern humans. Evol. Anthropol. 25, 64–78 (2016)

    Article  PubMed  Google Scholar 

  6. Potter, B. A., Irish, J. D., Reuther, J. D. & McKinney, H. J. New insights into Eastern Beringian mortuary behavior: a terminal Pleistocene double infant burial at Upward Sun River. Proc. Natl Acad. Sci. USA 111, 17060–17065 (2014)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014)

    Article  ADS  PubMed  Google Scholar 

  9. Tamm, E. et al. Beringian standstill and spread of Native American founders. PLoS One 2, e829 (2007)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Flegontov, P. et al. Na-Dene populations descend from the Paleo-Eskimo migration into America. Preprint at https://doi.org/10.1101/074476 (2016)

  11. Dillehay, T. D. et al. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320, 784–786 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Goebel, T. & Potter, B. A. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, T. M. & Mason, O. K. ) 223–252 (Oxford Univ. Press, 2016)

  13. Llamas, B. et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci. Adv. 2, e1501385 (2016)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455–458 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014)

    Article  PubMed  Google Scholar 

  16. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. Tackney, J. C. et al. Two contemporaneous mitogenomes from terminal Pleistocene burials in eastern Beringia. Proc. Natl Acad. Sci. USA 112, 13833–13838 (2015)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  18. Verdu, P. et al. Patterns of admixture and population structure in native populations of northwest North America. PLoS Genet. 10, e1004530 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malaspinas, A.-S. et al. bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS). Bioinformatics 30, 2962–2964 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dyke, A. S., Moore, A. & Robertson, L. Deglaciation of North America. (Natural Resources Canada, 2003)

  25. Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Kari, J. M. & Potter, B. A. (eds) The Dene–Yeniseian Connection (Univ. Alaska, 2011)

  27. Steinrücken, M., Kamm, J. A. & Song, Y. S. Inference of complex population histories using whole-genome sequences from multiple populations. Preprint at https://doi.org/10.1101/026591 (2015)

  28. Kamm, J. A., Terhorst, J. & Song, Y. S. Efficient computation of the joint sample frequency spectra for multiple populations. J. Comput. Graph. Stat. 26, 182–194 (2017)

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  29. Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Goebel, T. The ‘microblade adaptation’ and recolonization of Siberia during the late Upper Pleistocene. Archaeol. Pap. Am. Anthropol. Assoc. 12, 117–131 (2002)

    Article  Google Scholar 

  31. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015)

    Article  CAS  ADS  PubMed  Google Scholar 

  32. Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes 5, 337 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Racimo, F., Renaud, G. & Slatkin, M. Joint estimation of contamination, error and demography for nuclear DNA from ancient humans. PLoS Genet. 12, e1005972 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  42. Korneliussen, T. S. & Moltke, I. NgsRelate: a software tool for estimating pairwise relatedness from next-generation sequencing data. Bioinformatics 31, 4009–4011 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Albrechtsen, A. et al. Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet. Epidemiol. 33, 266–274 (2009)

    Article  PubMed  Google Scholar 

  44. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  46. Leppälä, K., Nielsen, S. V. & Mailund, T. admixturegraph: an R package for admixture graph manipulation and fitting. Bioinformatics 33, 1738–1740 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Upward Sun River excavations and analysis were conducted under a Memorandum of Agreement (MOA) signed by the State of Alaska, the National Science Foundation, the Healy Lake Tribal Council and the Tanana Chiefs Conference. We appreciate the cooperation of all parties. We thank M. Allentoft, S. Gopalakrishnan, T. Korneliussen, P. Librado, J. Ramos-Madrigal, G. Renaud and F. Vieira for discussions, and the Danish National High-throughput Sequencing Centre for assistance with data generation. GeoGenetics members were supported by the Lundbeck Foundation and the Danish National Research Foundation (DNRF94) and KU2016. J.V.M.-M. was supported by Conacyt (Mexico). Samples were recovered during excavations by B.A.P. supported by NSF Grants 1138811 and 1223119. Research was supported in part by NIH grant R01-GM094402 (M.St., J.T., J.A.K. and Y.S.S.) and a Packard Fellowship for Science and Engineering (Y.S.S.). Y.S.S. is a Chan Zuckerberg Biohub investigator. D.J.M. is supported by the Quest Archaeological Research Fund. A.-S.M. is supported by the Swiss National Science Foundation and the ERC.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by E.W. and B.A.P. and headed by E.W. L.V. processed ancient DNA. J.V.M.-M. and S.R. assembled datasets. J.V.M.-M., M.St., J.T., J.A.K. and A.A. analysed genetic data. B.A.P. led the USR field investigation and B.A.P. and D.J.M. provided anthropological contextualization. B.A.P., J.D.R. and J.D.I. conducted archaeological and bioanthropological work. R.N., Y.S.S., M.Si., A.-S.M., and L.O. supervised bioinformatic and statistical analyses. B.A.P. engaged with indigenous communities. J.V.M.-M., B.A.P., D.J.M. and E.W. wrote the manuscript with input from L.V., A.-S.M., M.Si., R.S.M., L.O., Y.S.S, R.N. and the other authors.

Corresponding author

Correspondence to Eske Willerslev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Life Sciences Reporting Summary (PDF 72 kb)

Supplementary Information

This file contains supplementary text 1 – 21, tables S1-S25 and figures S1-S30. (PDF 23149 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Mayar, J., Potter, B., Vinner, L. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018). https://doi.org/10.1038/nature25173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature25173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing