Mean global ocean temperatures during the last glacial transition

Abstract

Little is known about the ocean temperature’s long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the four-box model used to derive MOT, including the modern (‘Today’) and LGM characteristics of the boxes.
Figure 2: MOT records relative to today derived from three different atmospheric noble gas ratios and their mixture.
Figure 3: Comparison of our best-estimate MOT record with other palaeoclimatic records for the last glacial transition.

References

  1. 1

    Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C. & Forest, C. E. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Chang. 6, 394–398 (2016)

    Article  ADS  Google Scholar 

  2. 2

    Stocker, T. F. et al. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013)

  3. 3

    Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013)

    Article  ADS  Google Scholar 

  4. 4

    Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. 5

    Elderfield, H. et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 29, 160–169 (2010)

    Article  ADS  Google Scholar 

  6. 6

    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015)

    Article  ADS  CAS  Google Scholar 

  8. 8

    Snyder, C. W. Evolution of global temperature over the past two million years. Nature (2016)

  9. 9

    Headly, M. A. & Severinghaus, J. P. A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. J. Geophys. Res. 112, D19105 (2007)

    Article  ADS  CAS  Google Scholar 

  10. 10

    Bereiter, B., Severinghaus, J. & Kawamura, K. New method for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Commun. Mass Spectrom. (in the press)

  11. 11

    Ritz, S. P., Stocker, T. F. & Severinghaus, J. P. Noble gases as proxies of mean ocean temperature: sensitivity studies using a climate model of reduced complexity. Quat. Sci. Rev. 30, 3728–3741 (2011)

    Article  ADS  Google Scholar 

  12. 12

    Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998)

    Article  ADS  CAS  Google Scholar 

  13. 13

    Cuffey, K. M. et al. Deglacial temperature history of West Antarctica. Proc. Natl Acad. Sci. USA 113, 14249–14254 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. 14

    Lambeck, K., Rouby, H., Purcella, A., Sunc, Y. & Sambridgea, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. 15

    Hamme, R. C. & Severinghaus, J. P. Trace gas disequilibria during deep-water formation. Deep. Sea Res. I 54, 940–950 (2007)

    Article  Google Scholar 

  16. 16

    Loose, B. et al. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes. J. Geophys. Res. Oceans 121, 5959–5979 (2016)

    Article  ADS  Google Scholar 

  17. 17

    Bindoff, N. L. et al. Detection and Attribution of Climate Change: from Global to Regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 10, 867–952 (2013)

  18. 18

    Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008)

    Article  ADS  CAS  Google Scholar 

  19. 19

    Annan, J. D. & Hargreaves, J. C. A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim. Past 9, 367–376 (2013)

    Article  Google Scholar 

  20. 20

    Johnson, G. C. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res. 113, C05027 (2008)

    ADS  Google Scholar 

  21. 21

    Gebbie, G. & Huybers, P. How is the ocean filled? Geophys. Res. Lett. 38, L06604 (2011)

    Article  ADS  CAS  Google Scholar 

  22. 22

    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. 23

    Piotrowski, A. M., Goldstein, S. L., Hemming, S. R., Fairbanks, R. G. & Zylberberg, D. R. Oscillating glacial northern and southern deep water formation from combined neodymium and carbon isotopes. Earth Planet. Sci. Lett. 272, 394–405 (2008)

    Article  ADS  CAS  Google Scholar 

  24. 24

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. 25

    Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012)

    Article  ADS  PubMed  Google Scholar 

  26. 26

    Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. 27

    Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013)

    Article  ADS  PubMed  Google Scholar 

  28. 28

    Berger, A., Yin, Q., Nifenecker, H. & Poitou, J. Earth’s future slowdown of global surface air temperature increase and acceleration of ice melting. Earth’s Future 5, 811–822 (2017)

    Article  ADS  Google Scholar 

  29. 29

    Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016–1019 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. 30

    McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. 31

    Anderson, R. F. et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. 32

    Stocker, T. F. & Johnson, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087 (2003)

    Article  ADS  Google Scholar 

  33. 33

    Galbraith, E. D., Merlis, T. M. & Palter, J. B. Destabilization of glacial climate by the radiative impact of Atlantic Meridional Overturning Circulation disruptions. Geophys. Res. Lett. 43, 8214–8221 (2016)

    Article  ADS  Google Scholar 

  34. 34

    Buizert, C. & Schmittner, A. Southern Ocean control of glacial AMOC stability and Dansgaard–Oeschger interstadial duration. Paleoceanography 30, 1595–1612 (2015)

    Article  ADS  Google Scholar 

  35. 35

    WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440–444 (2013)

  36. 36

    Buizert, C. et al. The WAIS Divide deep ice core WD2014 chronology—part 1: methane synchronization (68–31 ka BP) and the gas age–ice age difference. Clim. Past 11, 153–173 (2015)

    Article  Google Scholar 

  37. 37

    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015)

    Article  ADS  CAS  Google Scholar 

  38. 38

    Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. USA 105, 1425–1430 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. 39

    Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. 40

    Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    Article  ADS  CAS  Google Scholar 

  41. 41

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. 42

    Reimer, P. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013)

    Article  CAS  Google Scholar 

  43. 43

    Severinghaus, J. P., Grachev, A., Luz, B. & Caillon, N. A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim. Cosmochim. Acta 67, 325–343 (2003)

    Article  ADS  CAS  Google Scholar 

  44. 44

    Kobashi, T., Severinghaus, J. P. & Kawamura, K. Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0-11,500 B.P.): Methodology and implications for gas loss processes. Geochim. Cosmochim. Acta 72, 4675–4686 (2008)

    Article  ADS  CAS  Google Scholar 

  45. 45

    Lüthi, D. et al. CO2 and O2/N2 variations in and just below the bubble-clathrate transformation zone of Antarctic ice cores. Earth Planet. Sci. Lett. 297, 226–233 (2010)

    Article  ADS  CAS  Google Scholar 

  46. 46

    Neff, P. A review of the brittle ice zone in polar ice cores. Ann. Glaciol. 55, 72–82 (2014)

    Article  ADS  Google Scholar 

  47. 47

    Taylor, K. C. WAIS Divide Ice Core Project: end of season field report 2008/2009. http://www.waisdivide.unh.edu/docs/EOS-Field-Reports_2008-2009.pdf (2009)

  48. 48

    Alley, R. B. WAIS Divide Ice Core Project: end of season field report 2007/2008. http://www.waisdivide.unh.edu/docs/EOS-Field-Reports_2007-2008.pdf (2008)

  49. 49

    Severinghaus, J. P., Beaudette, R., Headly, M. A., Taylor, K. & Brook, E. J. Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere. Science 324, 1431–1434 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. 50

    Souney, J. M. et al. Core handling and processing for the WAIS Divide ice-core project. Ann. Glaciol. 55, 15–26 (2014)

    Article  ADS  Google Scholar 

  51. 51

    Bereiter, B., Schwander, J., Lüthi, D. & Stocker, T. F. Change in CO2 concentration and O2/N2 ratio in ice cores due to molecular diffusion. Geophys. Res. Lett. 36, (2009)

  52. 52

    Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. 53

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014)

    Article  Google Scholar 

  54. 54

    Keeling, R. F. et al. Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus B 56, 322–338 (2004)

    Article  ADS  Google Scholar 

  55. 55

    Viglione, G. A. & Thompson, A. F. Lagrangian pathways of upwelling in the Southern Ocean. J. Geophys. Res. Oceans 121, 6295–6309 (2016)

    Article  ADS  Google Scholar 

  56. 56

    Spahni, R. et al. The attenuation of fast atmospheric CH4 variations recorded in polar ice cores. Geophys. Res. Lett. 30, (2003)

  57. 57

    Snow, K., Sloyan, B. M., Rintoul, S. R., Hogg, A. M. & Downes, S. M. Controls on circulation, cross-shelf exchange, and dense water formation in an Antarctic polynya. Geophys. Res. Lett. 43, 7089–7096 (2016)

    Article  ADS  Google Scholar 

  58. 58

    Schwander, J. Gas diffusion in firn. In Chemical Exchange Between the Atmosphere and Polar Snow (eds Wolff, E. W. & Bales, R. C. ) NATO ASI Series I: Global Environmental Change Vol. 43 (Springer, 1996)

  59. 59

    Kawamura, K. et al. Kinetic fractionation of gases by deep air convection in polar firn. Atmos. Chem. Phys. Discuss. 13, 7021–7059 (2013)

    Article  ADS  Google Scholar 

  60. 60

    Headly, M. A. Krypton and xenon in air trapped in polar ice cores: paleo-atmospheric measurements for estimating past mean ocean temperature and summer snowmelt frequency. PhD thesis, Univ. California, San Diego (Scripps Institution of Oceanography, 2008)

  61. 61

    Buizert, C. & Severinghaus, J. P. Dispersion in deep polar firn driven by synoptic-scale surface pressure variability. Cryosphere 10, 2099–2111 (2016)

    Article  ADS  Google Scholar 

  62. 62

    Hamme, R. C. & Emerson, S. R. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep. Sea Res. I 51, 1517–1528 (2004)

    Article  CAS  Google Scholar 

  63. 63

    Weiss, R. F. & Kyser, T. K. Solubility of krypton in water and seawater. J. Chem. Thermodyn. 23, 69–72 (1978)

    CAS  Google Scholar 

  64. 64

    Wood, D. & Caputi, R. Solubilities of Kr and Xe in fresh and sea water. (US Naval Radiological Defense Laboratory, 1966)

  65. 65

    Schlatter, T. W. Atmospheric Composition and Vertical Structure eae31MS, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.2310&rep=rep1&type=pdf (NOAA Earth Systems Research Laboratory, 2009)

  66. 66

    Alduchov, O. a. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996)

    Article  ADS  Google Scholar 

  67. 67

    He, F. et al. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett. 41, 623–631 (2014)

    Article  ADS  Google Scholar 

  68. 68

    Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J. Clim. 19, 5816–5842 (2006)

    Article  ADS  Google Scholar 

  69. 69

    Jiang, D. & Lang, X. Last Glacial Maximum East Asian monsoon: results of PMIP simulations. J. Clim. 23, 5030–5038 (2010)

    Article  ADS  Google Scholar 

  70. 70

    Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006)

  71. 71

    Schmidt, G. A. et al. Using palaeo-climate comparisons to constrain future projections in CMIP5. Clim. Past 10, 221–250 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (scholarship P2BEP2_152071), by the US National Science Foundation (grants 05-38630 and 09-44343 to J.S.) and by the JSPS KAKENHI (grants 21671001, 26241011, 15KK0027 and 17H06320 to K.K.). We thank C. Buizert for providing the WAIS divide past firn temperature modelling results and P. Pfister for providing the Bern3D model results. We are deeply indebted to many participants in the WAIS Divide project and especially thank K. Taylor, M. Twickler, the National Ice Core Laboratory, the Ice Drilling Design and Operations (IDDO) for ice drilling, the New York Air National Guard for airlift, and the Office of Polar Programs of the US National Science Foundation. R. Keeling first provided the idea for the noble-gas-based determination of mean ocean temperature.

Author information

Affiliations

Authors

Contributions

B.B. and D.B. performed the experiments and analysed the ice samples, and S.S. provided assistance. B.B. analysed the data and J.S. reviewed it. B.B. performed the simulations and data evaluations. J.S. supervised the project. K.K. developed central parts of the method used. B.B. drafted and wrote the manuscript and J.S., D.B. and S.S. reviewed it.

Corresponding author

Correspondence to Bernhard Bereiter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks W. Aeschbach, R. Stanley and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Elements related to the gravitational and thermal correction applied to the ice core data.

a, Residual of the isotope data after correction for gravitational enrichment in the firn based on δ40Ar (orange) and modelled firn thermal gradients (b, green36). In contrast to δ15N (black), δ86Kr (purple) clearly deviates from the zero line by −56 per meg on average, showing that our correction factors for δ86Kr are over-estimated (δ40Ar is zero by definition because we use this data for the correction). Error bars represent the 1σ analytical uncertainty of our method based on repeated measurements of modern air samples10. b, The two independent WAIS Divide ice core site firn thermal gradient scenarios used in this study. The blue trace represents the scenario derived from our isotope data for δ15N, δ40Ar and δ86Kr, while first we corrected δ86Kr by the offset seen in a. The green trace represents the model-based scenario and originates from ref. 36. Source data

Extended Data Figure 2 Raw atmospheric noble gas elemental ratios and relative differences between individual MOT records.

a, Reconstructed atmospheric elemental ratios (orange, δKr/N2; red, δXe/N2; purple, δXe/Kr) using δ40Ar to correct for gravitational enrichment in the firn, and using the firn thermal gradient scenario based on our isotope data (see Extended Data Fig. 1) to correct for thermal fractionation. The error bars are 1σ. b, Differences in MOT derived from each of the three individual gas ratios relative to the best-estimate (Mix) data (compare with Fig. 1; orange, Kr/N2 versus Mix; red, Xe/N2 versus Mix; purple, Xe/Kr versus Mix). Source data

Extended Data Table 1 Effects of box-model elements on the LGM–Holocene MOT difference
Extended Data Table 2 Simulated ocean and surface temperatures

Supplementary information

Supplementary Data

The basic raw isotope and elemental ratios referenced to the current atmosphere as derived from the WAIS divide ice core samples. (XLSX 21 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bereiter, B., Shackleton, S., Baggenstos, D. et al. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018). https://doi.org/10.1038/nature25152

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.