A surge of light at the birth of a supernova

  • Nature volume 554, pages 497499 (22 February 2018)
  • doi:10.1038/nature25151
  • Download Citation


It is difficult to establish the properties of massive stars that explode as supernovae1,2. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star3,4,5,6. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase7,8,9. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg)10, which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012)

  2. 2.

    Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. Publ. Astron. Soc. Aust. 32, e016 (2015)

  3. 3.

    & Radiation dynamics, envelope ejection, and supernova light curves. Astrophys. J. Suppl. Ser. 33, 515–562 (1977)

  4. 4.

    & Shock breakout in SN 1987A. Astrophys. J. 393, 742–755 (1992)

  5. 5.

    & The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999)

  6. 6.

    et al. Shock breakout in type II plateau supernovae: prospects for high-redshift supernova surveys. Astrophys. J. Suppl. Ser. 193, 20 (2011)

  7. 7.

    et al. Kiso Supernova Survey (KISS): survey strategy. Publ. Astron. Soc. Jpn 66, 114 (2014)

  8. 8.

    et al. The High Cadence Transient Survey (HITS). I. Survey design and supernova shock breakout constraints. Astrophys. J. 832, 155 (2016)

  9. 9.

    et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam Transient Survey. Astrophys. J. 819, 5 (2016)

  10. 10.

    & Discovery Certificate for Object 2016gkg. TNS Astronomical Transient Report No. 5381, (Transient Name Server, 2016)

  11. 11.

    et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006)

  12. 12.

    et al. From shock breakout to peak and beyond: extensive panchromatic observations of the type Ib supernova 2008D associated with Swift X-ray transient 080109. Astrophys. J. 702, 226–248 (2009)

  13. 13.

    et al. A Wolf-Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014)

  14. 14.

    et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016)

  15. 15.

    et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017)

  16. 16.

    et al. The progenitor and early evolution of the type IIb SN 2016gkg. Astrophys. J. 836, L12 (2017)

  17. 17.

    et al. Constraints on the progenitor of SN 2016gkg from its shock-cooling light curve. Astrophys. J. 837, L2 (2017)

  18. 18.

    et al. On the progenitor of the type IIb supernova 2016gkg. Mon. Not. R. Astron. Soc. 465, 4650–4657 (2017)

  19. 19.

    & Early supernova luminosity. Astrophys. J. 157, 623 (1969)

  20. 20.

    Shock steepening and prompt thermal emission in supernovae. Astrophys. J. 225, L133–L136 (1978)

  21. 21.

    & X-ray bursts from type II supernovae. Astrophys. J. 223, L109–L112 (1978)

  22. 22.

    et al. Multicolor light curve simulations of population III core-collapse supernovae: from shock breakout to 56Co decay. Astrophys. J. 821, 124 (2016)

  23. 23.

    et al. The type IIb supernova 2011dh from a supergiant progenitor. Astrophys. J. 757, 31 (2012)

  24. 24.

    , & Coupling of matter and radiation at supernova shock breakout. Mon. Not. R. Astron. Soc. 429, 3181–3199 (2013)

  25. 25.

    , & Non-relativistic radiation mediated shock breakouts. III. Spectral properties of supernova shock breakout. Astrophys. J. 774, 79 (2013)

  26. 26.

    The Zwicky transient facility. In The Third Hot-wiring the Transient Universe Workshop (eds et al. 27–33 (2014)

  27. 27.

    et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014)

  28. 28.

    , & Evolution of the color indices in SN 2006aj associated with GRB 060218. Astron. Astrophys. 523, A56 (2010)

  29. 29.

    A comment on image detection and the definition of limiting magnitude. Publ. Astron. Soc. Pacif. 102, 949–953 (1990)

  30. 30.

    ., ., & The Lick Observatory supernova search with the Katzman Automatic Imaging Telescope. ASP Conf. Ser. 246, 121–130 (2001)

  31. 31.

    et al. Results of the Lick Observatory supernova search follow-up photometry program: BVRI light curves of 165 type Ia supernovae. Astrophys. J. Suppl. Ser. 190, 418–448 (2010)

  32. 32.

    et al. The nearby type Ibn supernova 2015G: signatures of asymmetry and progenitor constraints. Mon. Not. R. Astron. Soc. 471, 4381–4397 (2017)

  33. 33.

    et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995)

  34. 34.

    et al. The DEIMOS spectrograph for the Keck II telescope: integration and testing. Proc. SPIE 4841, 1657–1669 (2003)

  35. 35.

    The importance of atmospheric differential refraction in spectrophotometry. Publ. Astron. Soc. Pacif. 94, 715–721 (1982)

  36. 36.

    et al. SN 1993J in M 81: one year of observations at Asiago. Astron. Astrophys. Suppl. Ser. 110, 513–519 (1995)

  37. 37.

    et al. Optical spectroscopy of supernova 1993J during its first 2500 days. Astron. J. 120, 1487–1498 (2000)

  38. 38.

    et al. Optical and near-infrared observations of SN 2011dh – the first 100 days. Astron. Astrophys. 562, A17 (2014)

  39. 39.

    & WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pacif. 124, 668–681 (2012)

  40. 40.

    et al. Direct analysis of spectra of type Ib supernovae. Astrophys. J. 566, 1005–1017 (2002)

  41. 41.

    , & Hydrodynamical models of type II plateau supernovae. Astrophys. J. 729, 61 (2011)

  42. 42.

    & Presupernova evolution of massive stars. Phys. Rep. 163, 13–36 (1988)

  43. 43.

    et al. The first systematic study of type Ibc Supernova multi-band light curves. Astrophys. J. 741, 97 (2011)

  44. 44.

    et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016)

  45. 45.

    . et al. The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves. Astron. Astrophys. (2017)

  46. 46.

    et al. The progenitor of supernova 2011dh has vanished. Astrophys. J. 772, L32 (2013)

  47. 47.

    et al. Numerically modeling the first peak of the type IIb SN 2016gkg. Astrophys. J. 846, 94 (2017)

  48. 48.

    et al. Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old type II supernovae. Astrophys. J. 818, 3 (2016)

  49. 49.

    , , & Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108–L112 (2017)

  50. 50.

    et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008)

  51. 51.

    et al. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae. Science 321, 1185–1188 (2008)

  52. 52.

    , & Did we observe the supernova shock breakout in GRB 060218? Mon. Not. R. Astron. Soc. 382, L77–L81 (2007)

  53. 53.

    The X-ray transient 080109 in NGC 2770: an X-ray flash associated with a normal core-collapse supernova. Mon. Not. R. Astron. Soc. 388, 603–610 (2008)

  54. 54.

    ., ., ., & SOUSA: the Swift Optical/Ultraviolet Supernova Archive. Astrophys. Space Sci. 354, 89–96 (2014)

  55. 55.

    & Exploring the efficacy and limitations of shock-cooling models: new results for type II supernovae observed by the Kepler mission. Astrophys. J. 848, 8 (2017)

  56. 56.

    , , , & BetaDrizzle: a redesign of the MultiDrizzle package. In 2010 Space Telescope Science Institute Calibration Workshop 382–387 (2010)

  57. 57.

    , , & (eds) The DrizzlePac Handbook (STScI, 2012)

  58. 58.

    WFPC2 stellar photometry with HSTPHOT. Publ. Astron. Soc. Pacif. 112, 1383–1396 (2000)

  59. 59.

    ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid. Kurucz CD-ROM No. 13 (Smithsonian Astrophysical Observatory, 1993)

  60. 60.

    & A code for stellar binary evolution and its application to the formation of helium white dwarfs. Mon. Not. R. Astron. Soc. 342, 50–60 (2003)

  61. 61.

    , & A binary progenitor for the type IIb supernova 2011dh in M51. Astrophys. J. 762, 74 (2013)

  62. 62.

    Evolutionary processes in close binary systems. Annu. Rev. Astron. Astrophys. 9, 183 (1971)

  63. 63.

    et al. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption. Astrophys. J. 779, 38 (2013)

  64. 64.

    & An atlas of H and R images and radial profiles of bright isolated spiral galaxies. Astrophys. J. Suppl. Ser. 162, 97–112 (2006)

  65. 65.

    & Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011)

  66. 66.

    & Using strong lines to estimate abundances in extragalactic H II regions and starburst galaxies. Astrophys. J. Suppl. Ser. 142, 35–52 (2002)

  67. 67.

    & New calibrations for abundance determinations in H II regions. Mon. Not. R. Astron. Soc. 457, 3678–3692 (2016)

  68. 68.

    et al. New fully empirical calibrations of strong-line metallicity indicators in starforming galaxies. Mon. Not. R. Astron. Soc. 465, 1384–1400 (2017)

  69. 69.

    , , & The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)

  70. 70.

    et al. UBVRI photometry of SN 1993J in M81: the first 120 days. Astron. J. 107, 1022–1040 (1994)

  71. 71.

    et al. SN 2011dh: discovery of a type IIb supernova from a compact progenitor in the nearby galaxy M51. Astrophys. J. 742, L18 (2011)

Download references


We are grateful to P. Brown for providing information about the photometry of the early Swift/UVOT data of SN 2006aj. M.C.B. acknowledges support from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) through grant PICT-2015-3083 ‘Progenitores de Supernovas de Colapso Gravitatorio’ and from the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence ‘Origin and Structure of the Universe’. M.C.B., G.F. and O.G.B. acknowledge support from grant PIP-2015-2017-11220150100746CO of CONICET ‘Estrellas Binarias y Supernovas’. G.F. further acknowledges support from ANPCyT grant PICT-2015-2734 ‘Nacimiento y Muerte de Estrellas Masivas: Su relación con el Medio Interestelar’. K.M. acknowledges support from JSPS KAKENHI grant 17H02864. Partial support for this work was provided by NASA through programmes GO-14115 and AR-14295 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. M.O. acknowledges support from grant PI UNRN40B531. A.V.F. is also grateful for financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation and the Miller Institute for Basic Research in Science (University of California Berkeley). We thank the University of California Berkeley undergraduate students S. Channa, G. Halevy, A. Halle, M. de Kouchkovsky, J. Molloy, T. Ross, S. Stegman and S. Yunus for their effort in collecting Lick/Nickel data, and T.d.J. for help with some of the Keck observations. The Lick and Keck Observatory staff provided excellent assistance. A major upgrade of the Kast spectrograph on the Shane 3-m telescope at Lick Observatory was made possible through gifts from William and Marina Kast as well as the Heising-Simons Foundation. Research at Lick Observatory is partially supported by a gift from Google. KAIT and its on-going operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia and Jim Katzman Foundation and the TABASGO Foundation. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among California Institute of Technology, the University of California and NASA; the observatory was made possible by financial support from the W. M. Keck Foundation. O.G.B. is a member of the Carrera del Investigador Científico de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina.

Author information


  1. Instituto de Astrofísica de La Plata (IALP), CONICET, Argentina

    • M. C. Bersten
    • , G. Folatelli
    •  & O. G. Benvenuto
  2. Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA, La Plata, Argentina

    • M. C. Bersten
    • , G. Folatelli
    • , F. García
    •  & O. G. Benvenuto
  3. Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

    • M. C. Bersten
    • , G. Folatelli
    • , K. Maeda
    •  & K. Nomoto
  4. Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA), CC No. 5, 1894 Villa Elisa, Argentina.

    • F. García
  5. Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, F-91191 Gif-sur-Yvette, France

    • F. García
  6. Caltech/IPAC, Mailcode 100-22, Pasadena, California 91125, USA

    • S. D. Van Dyk
  7. Sede Andina, Universidad Nacional de Río Negro, Mitre 630 (8400) Bariloche, CONICET, Argentina

    • M. Orellana
  8. Observatorio Astronómico Busoniano, Entre Ríos 2974 (2000), Rosario, Argentina

    • V. Buso
  9. Observatorio Astronómico Geminis Austral, Rosario, Argentina.

    • J. L. Sánchez
  10. Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

    • M. Tanaka
    •  & T. J. Moriya
  11. Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

    • K. Maeda
  12. Department of Astronomy, University of California, Berkeley, California 94720-3411, USA

    • A. V. Filippenko
    • , W. Zheng
    • , T. G. Brink
    • , T. de Jaeger
    •  & I. Shivvers
  13. Miller Senior Fellow, Miller Institute for Basic Research in Science, University of California, Berkeley, California 94720, USA

    • A. V. Filippenko
  14. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • S. B. Cenko
  15. Joint Space-Science Institute, University of Maryland, College Park, Maryland 20742, USA

    • S. B. Cenko
  16. Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, Florida 32306, USA.

    • S. Kumar
  17. Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK

    • D. A. Perley
  18. Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA.

    • N. Smith


  1. Search for M. C. Bersten in:

  2. Search for G. Folatelli in:

  3. Search for F. García in:

  4. Search for S. D. Van Dyk in:

  5. Search for O. G. Benvenuto in:

  6. Search for M. Orellana in:

  7. Search for V. Buso in:

  8. Search for J. L. Sánchez in:

  9. Search for M. Tanaka in:

  10. Search for K. Maeda in:

  11. Search for A. V. Filippenko in:

  12. Search for W. Zheng in:

  13. Search for T. G. Brink in:

  14. Search for S. B. Cenko in:

  15. Search for T. de Jaeger in:

  16. Search for S. Kumar in:

  17. Search for T. J. Moriya in:

  18. Search for K. Nomoto in:

  19. Search for D. A. Perley in:

  20. Search for I. Shivvers in:

  21. Search for N. Smith in:


M.C.B., hydrodynamical models and interpretation. G.F., supernova and pre-supernova data analysis and interpretation. F.G., supernova data analysis and interpretation. S.V.D.D., supernova and pre-supernova data analysis and interpretation. O.G.B., binary evolution models. M.O., early data comparisons. M.T. and K.M., shock-breakout interpretation. V.B., supernova discovery. J.L.S., early supernova observations. A.V.F., Lick and Keck Observatory data and paper editing. W.Z., T.G.B., T.d.J., I.S., S.K. and N.S., observations and reductions. T.J.M., circumstellar material interpretation. K.N., pre-supernova models. S.B.C. and D.A.P., spectral reductions.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to M. C. Bersten or G. Folatelli.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.