Initiation and long-term instability of the East Antarctic Ice Sheet

Abstract

Antarctica’s continental-scale ice sheets have evolved over the past 50 million years1,2,3,4. However, the dearth of ice-proximal geological records5,6,7,8 limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations9,10,11. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago1,2,3,4. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys12 associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming10,11. Cooling since the late Miocene13 resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment14,15,16. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections10,11,15,17 may be under-estimated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ASB elevations and Sabrina Coast bathymetry.
Figure 2: Sabrina Coast seismic and piston core biostratigraphy.
Figure 3: Composite Sabrina Coast section with glacial surfaces and climate indicators.

References

  1. 1

    Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic ocean, and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977)

    ADS  CAS  Google Scholar 

  2. 2

    Coxall, H. K. et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    ADS  CAS  PubMed  Google Scholar 

  3. 3

    Kominz, M. A. et al. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res. 20, 211–226 (2008)

    ADS  Google Scholar 

  4. 4

    Mudelsee, M., Bickert, T., Lear, C. H. & Lohmann, G. Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records. Rev. Geophys. 52, 333–374 (2014)

    ADS  Google Scholar 

  5. 5

    Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001)

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Naish, T. R. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009)

    ADS  CAS  PubMed  Google Scholar 

  7. 7

    Cooper, A. K. et al. in Antarctic Climate Evolution. Developments in Earth and Environmental Sciences (eds Florindo, F. & Siegert, M. ) 115–228 (Elsevier, 2009)

  8. 8

    Escutia, C ., Brinkhuis, H ., Klaus, A. & Expedition 318 Scientists. Wilkes Land Glacial History. Proc. Integrated Ocean Drilling Program 318, http://doi.org/10.2204/iodp.proc.318.2011 (Ocean Drilling Program Management International, 2011)

  9. 9

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013)

    ADS  Google Scholar 

  10. 10

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015)

    ADS  CAS  PubMed  Google Scholar 

  11. 11

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016)

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Kehew, A. E., Piotrowski, J. A. & Jørgensen, F. Tunnel valleys: concepts and controversies. Earth Sci. Rev. 113, 33–58 (2012)

    ADS  Google Scholar 

  13. 13

    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016)

    ADS  CAS  Google Scholar 

  14. 14

    Cook, C. P. et al. Dynamic behavior of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013)

    ADS  CAS  Google Scholar 

  15. 15

    Aitken, A. R. A. et al. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533, 385–389 (2016)

    ADS  CAS  PubMed  Google Scholar 

  16. 16

    Rovere, A. et al. The Mid-Pliocene sea-level conundrum: glacial isostasy, eustacy, and dynamic topography. Earth Planet. Sci. Lett. 387, 27–33 (2014)

    ADS  CAS  Google Scholar 

  17. 17

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013)

  18. 18

    Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016)

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006)

    ADS  PubMed  Google Scholar 

  21. 21

    Liebrand, D. et al. Evolution of the early Antarctic ice ages. Proc. Natl Acad. Sci. USA 114, 3867–3872 (2017)

    ADS  CAS  PubMed  Google Scholar 

  22. 22

    Scher, H. D., Bohaty, S. M., Smith, B. W. & Munn, G. H. Isotopic interrogation of a suspected late Eocene glaciation. Paleoceanography 29, 628–644 (2014)

    ADS  Google Scholar 

  23. 23

    Carter, A., Riley, T. R., Hillenbrand, C.-D. & Rittner, M. Widespread Antarctic glaciation during the late Eocene. Earth Planet. Sci. Lett. 458, 49–57 (2017)

    ADS  CAS  Google Scholar 

  24. 24

    Passchier, S., Ciarletta, D. J., Miriagos, T. E., Bijl, P. K. & Bohaty, S. M. An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition. GSA Bull. 129, 318–330 (2017)

    Google Scholar 

  25. 25

    Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017)

    ADS  Google Scholar 

  26. 26

    Young, D. A. et al. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474, 72–75 (2011)

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Li, X., Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 43, 6366–6373 (2016)

    ADS  Google Scholar 

  28. 28

    Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016)

    ADS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Wright, A. P. et al. Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. J. Geophys. Res. 117, F01033 (2012)

    ADS  Google Scholar 

  30. 30

    Close, D. I., Stagg, H. M. J. & O’Brien, P. E. Seismic stratigraphy and sediment distribution on the Wilkes Land and Terre Adélie margins, East Antarctica. Mar. Geol. 239, 33–57 (2007)

    ADS  Google Scholar 

  31. 31

    Anderson, J. & Bartek, L. R. in The Antarctic Paleoenvironment: A Perspective on Global Change (eds Kennett, J. P. & Warnke, D. A. ) Antarctic Research Series Vol. 56, 213–263 (American Geophysical Union, 1992)

  32. 32

    Ó Cofaigh, C. Tunnel valley genesis. Prog. Phys. Geogr. 20, 1–19 (1996)

    Google Scholar 

  33. 33

    Huuse, M. & Lykke-Andersen, H. Over-deepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quat. Sci. Rev. 19, 1233–1253 (2000)

    ADS  Google Scholar 

  34. 34

    Denton, G. H. & Sugden, D. E. Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. Geograf. Ann. A 87, 67–85 (2005)

    Google Scholar 

  35. 35

    Lonergan, L., Maidment, S. & Collier, J. Pleistocene subglacial tunnel valleys in the central North Sea basin: 3-D morphology and evolution. J. Quat. Sci. 21, 891–903 (2006)

    Google Scholar 

  36. 36

    Elmore, C. R., Gulick, S. P. S., Willems, B. & Powell, R. Seismic stratigraphic evidence for glacial expanse during glacial maxima in the Yakutat Bay Region, Gulf of Alaska. Geochem. Geophys. Geosyst. 14, 1294–1311 (2013)

    ADS  Google Scholar 

  37. 37

    van der Vegt, P., Janszen, A. & Moscariello, A. Tunnel valleys: current knowledge and future perspectives. Geol. Soc. Lond. Spec. Publ. 368, 75–97 (2012)

    ADS  Google Scholar 

  38. 38

    Bjarnadóttir, L. R., Winsborrow, M. C. M. & Andreassen, K. Large subglacial meltwater features in the central Barents Sea. Geology 45, 159–162 (2017)

    ADS  Google Scholar 

  39. 39

    Piotrowski, J. A. Subglacial hydrology in north-western Germany during the last glaciation: groundwater flow, tunnel valleys and hydrologic cycles. Quat. Sci. Rev. 16, 169–185 (1997)

    ADS  Google Scholar 

  40. 40

    Bart, P. J. Were West Antarctic Ice Sheet grounding events in the Ross Sea a consequence of East Antarctic Ice Sheet expansion during the middle Miocene? Earth Planet. Sci. Lett. 216, 93–107 (2003)

    ADS  CAS  Google Scholar 

  41. 41

    Scherer, R. P. A new method for the determination of absolute abundance of diatom and other silt-sized sedimentary particles. J. Paleolimnol. 12, 171–179 (1994)

    ADS  Google Scholar 

  42. 42

    Crampton, J. S. et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years. Proc. Natl Acad. Sci. USA 113, 6868–6873 (2016)

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Contreras, L. et al. Southern high-latitude terrestrial climate change during the Paleocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau). Clim. Past Discuss. 10, 291–340 (2014)

    ADS  Google Scholar 

  44. 44

    Partridge, A. D. Late Cretaceous-Cenozoic palynology zonations: Gippsland Basin. In Australian Mesozoic and Cenozoic Palynology Zonations (update to the 2004 Geologic Time Scale) (ed. Monteil, E. ) Geoscience Australia Record 2006/23 (2006)

  45. 45

    MacPhail, M. K. & Truswell, E. M. Palynology of Site 1166, Prydz Bay, East Antarctica. Proc. ODP Sci. Res. 188, 1–43 (2004)

    Google Scholar 

  46. 46

    Truswell, E. M. & MacPhail, M. K. Fossil forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctica say? Aust. Syst. Bot. 22, 57–106 (2009)

    Google Scholar 

  47. 47

    Raine, J. I ., Mildenhall, D. C & Kennedy, E. M. New Zealand Fossil Spores and Pollen: an Illustrated Catalogue 4th edn, http://data.gns.cri.nz/sporepollen/index.htm (GNS Science Miscellaneous Series 4, 2011)

  48. 48

    Hill, R. S. (ed.) in History of the Australian Vegetation: Cretaceous to Recent 233 (Cambridge Univ. Press, 1994)

  49. 49

    Truswell, E. M. Recycled Cretaceous and Tertiary pollen and spores in Antarctic marine sediments: a catalogue. Palaeontographica B 186, 121–174 (1983)

    Google Scholar 

  50. 50

    Pocknall, D. T. Late Eocene to early Miocene vegetation and climate history of New Zealand. J. R. Soc. N. Z. 19, 1–18 (1989)

    Google Scholar 

  51. 51

    Dettmann, M. E., Pocknall, D. T., Romero, E. J. & Zamalao, M. del C. Nothofagidites Erdtman ex Potonie, 1960; a catalogue of species with notes on the paleogeographic distribution of Nothofagus BI. (Southern Beech). N. Z. Geol. Surv. Paleo. Bull. 60, 1–79 (1990)

    Google Scholar 

  52. 52

    Stover, L. E . & Partridge, A. D. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vic. 85, 237–286 (1973)

    Google Scholar 

  53. 53

    Stover, L. E. & Evans, P. R. Upper Cretaceous-Eocene spore-pollen zonation, offshore Gippsland Basin, Australia. Geol. Soc. Aust. Spec. Pub. 4, 55–72 (1973)

    Google Scholar 

  54. 54

    Harris, W. K. Basal Tertiary microfloras from the Princetown area, Victoria, Australia. Palaeontographica B 115, 75–106 (1965)

    Google Scholar 

  55. 55

    Couper, R. A. New Zealand Mesozoic and Cainozoic plant microfossils. N. Z. Geol. Surv. Paleo. Bull. 32, 1–87 (1960)

    Google Scholar 

  56. 56

    Raine, J. I. Outline of a palynological zonation of Cretaceous to Paleogene terrestrial sediments in west coast region, South Island, New Zealand. N. Z. Geol. Surv. Rep. 109, 1–82 (1984)

    Google Scholar 

  57. 57

    Greenwood, D. R., Moss, P. T., Rowett, A. I., Vadala, A. J. & Keefe, R. L. Plant communities and climate change in southeastern Australia during the early Paleogene. Geol. Soc. Spec. Pap. 369, 365–380 (2003)

    Google Scholar 

  58. 58

    Stover, L. E. & Partridge, A. D. Eocene spore-pollen from the Werillup Formation, Western Australia. Palynology 6, 69–96 (1982)

    Google Scholar 

  59. 59

    Thomas, E. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proc. ODP Sci. Res. 113, 571–594 (1990)

    Google Scholar 

  60. 60

    McGowran, B. Two Paleocene foraminiferal faunas from the Wangerrip Group, Pebble Point Coastal section, Western Victoria. Proc. R. Vict. 79, 9–74 (1965)

    Google Scholar 

  61. 61

    Brotzen, F. The Swedish Paleocene and its foraminiferal fauna. Arsb. Sver. Geol. Unders. 42, 1–140 (1948)

    Google Scholar 

  62. 62

    Holbourn, A ., Henderson, A . & MacLeod, N. Atlas of Benthic Foraminifera (Wiley-Blackwell, 2013)

  63. 63

    Li, Q., James, N. P. & McGowran, B. Middle and late Eocene Great Australian Bight lithobiostratigraphy and stepwise evolution of the southern Australian continental margin. Aust. J. Earth Sci. 50, 113–128 (2003)

    ADS  Google Scholar 

  64. 64

    Tauxe, L. et al. Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkesland Margin: constraints for paleoceanographic reconstruction. Paleoceanography 27, PA2214 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the NBP14-02 science party, the ECO captain and crew, and the ASC technical staff aboard the RV/IB N. B. Palmer. NBP14-02 was supported by the National Science Foundation (grants NSF PLR-1143836, PLR-1143837, PLR-1143843, PLR-1430550 and PLR-1048343) and a GSA graduate student research grant (to C.S.). We thank the Antarctic Marine Geology Research Facility staff at Florida State University for sampling assistance and E. Thomas, M. Katz, F. Sangiorni, P. Bijl and S. Manchester for discussions. This is UTIG Contribution #3137.

Author information

Affiliations

Authors

Contributions

S.P.S.G. and A.E.S. contributed equally to this work, co-writing the manuscript with input from all authors. D.D.B., S.P.S.G., A.L. and A.E.S. conceived the study. B.F., R.F., S.P.S.G., A.L., A.E.S., C.S. and the shipboard scientific party collected geophysical data and samples on USAP cruise NBP14-02. All authors contributed to the analyses and interpretation of the results.

Corresponding author

Correspondence to Sean P. S. Gulick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks K. Billups, A. Bruch, S. Greenwood and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Uninterpreted NBP14-02 seismic profiles with line crossings and coring sites indicated.

a, Line 13 with piston core sites JPC-30 and JPC-31 and formation penetration depths indicated by red lines. b, Line 17 with core sites JPC-55 and JPC-54 and formation penetration depths indicated by red lines. c, Line 07 showing intersection with Line 10. d, Line 10 showing intersections with Line 07 and Line 21. e, Line 21 showing intersection with Line 10. CDP, common depth point.

Extended Data Figure 2 Site location and sedimentological, geochemical and palaeontological data from piston core NBP14-02 JPC-55 plotted versus depth.

a, Chirp record of JPC-55 site; location and penetration indicated (red line); site coordinates and multibeam depth (MB) included. b, Gastropod steinkern (70–72 cm below sea floor). c, Siderite concretion with monocot stem nucleus (118–125 cm below sea floor). d, Close-up of monocot stem. e, JPC-55 lithologic unit, photograph, X-ray radiograph, graphic lithology, coring disturbance, sedimentary structures, lithologic accessories (such as fossils and diagenetic features), sample locations, age, benthic foraminifers per 30 cm3 sediment, magnetic susceptibility (in SI units), gamma ray attenuation (GRA) bulk density (grams per cubic centimetre of sediment), bulk sediment δ13Corg (per mil; VPDB‰), and carbon/nitrogen (C/N) plotted versus depth in centimetres below sea floor (cmbsf; Supplementary Information).

Extended Data Figure 3 Site location and sedimentological and geochemical data from piston core NBP14-02 JPC-54 plotted versus depth.

a, JPC-54 lithologic unit, photograph, X-ray radiograph, graphic lithology, coring disturbance, sedimentary structures, lithologic accessories, sample locations, age, magnetic susceptibility (in SI units; Supplementary Information), GRA bulk density (grams per cubic centimetre of sediment), and bulk sediment δ13Corg (per mil; VPDB‰) plotted versus depth in centimetres below sea floor (cmbsf). b, Chirp record of JPC-54 site; location and penetration indicated (red line); site coordinates and multibeam depth included.

Extended Data Figure 4 Site location and sedimentological data from piston cores NBP14-02 JPC-30 and JPC-31 plotted versus depth.

a, Chirp record of JPC-30 site; location and penetration indicated (red line); site coordinates and multibeam depth included. b, JPC-30 lithologic unit, photograph, X-ray radiograph, graphic lithology, coring disturbance, sedimentary structures, lithologic accessories, sample locations, age, magnetic susceptibility (in SI units; see Supplementary Information), and GRA bulk density (grams per cubic centimetre of sediment) plotted versus depth in centimetres below sea floor (cmbsf). c, Chirp record of JPC-31 site; location, and penetration indicated (red line). d, JPC-31 lithology, age and physical properties as above.

Extended Data Figure 5 Benthic foraminifers from piston core NBP14-02 JPC-55

. a, Hoeglundina elegans (sample depth 76–78 cm below sea floor). b, SEM image of Hoeglundina elegans (76–78 cm below sea floor). c, Ceratobulimina sp. (70–72 cm below sea floor). d, Ceratobulimina sp. (70–72 cm below sea floor). e, SEM of Ceratobulimina sp. (70–72 cm below sea floor). f, SEM image of Gyroidinoides globosus (110–113 cm below sea floor). g, SEM image of Gyroidinoides globosus (110–113 cm below sea floor). h, Gyroidinoides globosus with pyrite (136–138 cm below sea floor). i, Gyroidinoides globosus with zoom-in of umbilicus on the right; pyrite is visible on the lower right side of the test (136–138 cm below sea floor). j, Palmula sp. (136–138 cm below sea floor; test >450 μm).

Extended Data Figure 6 Siliceous microfossils from piston core NBP14-02 JPC-31 diatomite sample.

a, Thalassiosira torokina. b, Thalassiosira oliverana var. sparsa. c, Actinocyclus ingens var. ovalis. d, Coscinodiscus marginatus. e, Azpeitia sp. 1. f, Actinocyclus sp. g, Actinocyclus sp. h, Shionodiscus tetraoestrupii. i, Shionodiscus tetraoestrupii. j, Shionodiscus oestrupii. k, Denticulopsis delicate. l, Denticulopsis simonsenii/D. vulgaris. m, Denticulopsis simonsenii/D. vulgaris. n, Denticulopsis delicate. o, Denticulopsis simonsenii/D. vulgaris. p, Rouxia naviculoides. q, Fragilariopsis praecurta. r, Fragilariopsis sp. 1. s, Trinacria excavate. t, Rhizosolenia hebetate. u, Eucampia antarctica var. recta. v, Distephanus speculum speculum f. varians. Sample taken from 43–45 cm below sea floor.

Extended Data Table 1 NBP14-02 piston core locations, water depths, and recovered core lengths
Extended Data Table 2 Piston core NBP14-02 JPC-55 and JPC-54 raw terrestrial pollen counts
Extended Data Table 3 Piston core NBP14-02 JPC-55 raw benthic foraminifer counts

Supplementary information

Supplementary Data

This file contains Supplementary Data for sediment cores NBP14-02 JPC-30, -31, -54, and -55. The data file contains all sedimentary data plotted in Extended Data Figures 2-4. Physical properties data for JPC-30, -31, -54, and -55 are in four separate worksheets, listed by core ID. Bulk organic geochemical data from JPC-54 and -55 are in two separate worksheets, listed by core ID. (XLSX 30 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulick, S., Shevenell, A., Montelli, A. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017). https://doi.org/10.1038/nature25026

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing