Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts

Abstract

The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles1,2,3,4,5. It has also been linked to the origination and diversification of early animals3,5,6,7. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago1,2,3,4,5,6,7,8,9,10,11,12, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago3,5,7,11,13. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average Fe3+/ΣFe ratios of basalts from specific ophiolites and drilled oceanic crust.
Figure 2: Histograms of Fe3+/ΣFe ratios from individual samples as a function of time period.
Figure 3: Comparison of Fe3+/ΣFe ratios from ophiolite basalts versus continental volcanic rocks (including subaerial volcanics).
Figure 4: Calculated deep-ocean O2 concentrations versus time compared to previous estimates of 𝑝O2,atm.

Similar content being viewed by others

References

  1. Canfield, D. E. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K. ) 197–216 (Elsevier, 2014)

  2. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl Acad. Sci. USA 107, 17911–17915 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Slack, J., Grenne, T., Bekker, A., Rouxel, O. & Lindberg, P. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255, 243–256 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949–952 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Blamey, N. J. et al. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology 44, 651–654 (2016)

    Article  ADS  CAS  Google Scholar 

  14. Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belcher, C. & McElwain, J. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006)

  17. Bach, W. & Edwards, K. J. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 3871–3887 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Dilek, Y. & Furnes, H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123, 387–411 (2011)

    Article  ADS  CAS  Google Scholar 

  19. Kasting, J. F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 82–93 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Nilsson, K. & Peach, C. L. Sulfur speciation, oxidation state, and sulfur concentration in backarc magmas. Geochim. Cosmochim. Acta 57, 3807–3813 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Staudigel, H., Plank, T., White, B. & Schmincke, H. U. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. Geophys. Monogr. Ser. 96, 19–38 (1996)

    Google Scholar 

  22. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hofmann, A. & Harris, C. Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem. Geol. 257, 221–239 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014)

    Article  ADS  CAS  Google Scholar 

  29. Stolper, D. A., Bender, M. L., Dreyfus, G. B., Yan, Y. & Higgins, J. A. Pleistocene ice core record of atmospheric O2 concentrations. Science 353, 1427–1430 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Kump, L. R., Kasting, J. F. & Barley, M. E. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst. 2, 1025 (2001)

    Article  ADS  Google Scholar 

  32. Andersen, M. B. et al. The terrestrial uranium isotope cycle. Nature 517, 356–359 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Furnes, H., Dilek, Y. & De Wit, M. Precambrian greenstone sequences represent different ophiolite types. Gondwana Res. 27, 649–685 (2015)

    Article  ADS  CAS  Google Scholar 

  34. Furnes, H., De Wit, M. & Dilek, Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geosci. Front. 5, 571–603 (2014)

    Article  CAS  Google Scholar 

  35. Lécuyer, C. & Ricard, Y. Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth Planet. Sci. Lett. 165, 197–211 (1999)

    Article  ADS  Google Scholar 

  36. Pallister, J. S., Budahn, J. R. & Murchey, B. L. Pillow basalts of the Angayucham terrane: oceanic plateau and island crust accreted to the Brooks Range. J. Geophys. Res. Solid Earth 94, 15901–15923 (1989)

    Article  Google Scholar 

  37. Johnson, H. P. & Semyan, S. W. Age variation in the physical properties of oceanic basalts: implications for crustal formation and evolution. J. Geophys. Res. Solid Earth 99, 3123–3134 (1994)

    Article  CAS  Google Scholar 

  38. Rybacki, K., Kump, L., Hanski, E. & Melezhik, V. Weathering during the Great Oxidation Event: Fennoscandia, arctic Russia 2.06 Ga ago. Precambr. Res. 275, 513–525 (2016)

    Article  ADS  CAS  Google Scholar 

  39. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015); https://www.r-project.org

  41. Wallace, P. & Carmichael, I. S. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863–1874 (1992)

    Article  ADS  CAS  Google Scholar 

  42. Alt, J. C. & Honnorez, J. Alteration of the upper oceanic crust, DSDP site 417: mineralogy and chemistry. Contrib. Mineral. Petrol. 87, 149–169 (1984)

    Article  ADS  CAS  Google Scholar 

  43. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008)

    Article  ADS  Google Scholar 

  44. Keller, C. B., Schoene, B., Barboni, M., Samperton, K. M. & Husson, J. M. Volcanic-plutonic parity and the differentiation of the continental crust. Nature 523, 301–307 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013)

    Article  ADS  CAS  Google Scholar 

  46. Müller, R., Dutkiewicz, A., Seton, M. & Gaina, C. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology 41, 907–910 (2013)

    Article  ADS  Google Scholar 

  47. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996)

    Article  ADS  CAS  Google Scholar 

  48. Gregory, R. T. & Taylor, H. P. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. Solid Earth 86, 2737–2755 (1981)

    Article  CAS  Google Scholar 

  49. Bickle, M. J. & Teagle, D. A. Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. Earth Planet. Sci. Lett. 113, 219–237 (1992)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

D.A.S. acknowledges discussions with M. Bender, B. Buffett, D. DePaolo, J. Eiler, S. Finnegan, W. Fischer, J. Higgins, A. Saal and E. Stolper. We thank D. Canfield for advice on a prior draft. C.B.K. acknowledges support from the Ann and Gordon Getty Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.A.S. conceived the study and compiled the ophiolite basalt data. C.B.K. provided the continental volcanic data. Both authors contributed to data analysis, modelling and writing.

Corresponding author

Correspondence to Daniel A. Stolper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks L. Kump and E. Sperling for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Relationships between Fe3+/ΣFe, total iron, and sample age.

a, Fe3+/ΣFe versus total Fe for all ophiolite basalt data. The regression line (dotted grey line) is a linear regression through all data with a 95% confidence interval shaded in grey. b, Total Fe versus age for all ophiolite data. The regression line (dotted grey line) is a linear regression through all data with a 95% confidence interval shaded in grey. Combination of the regression lines in a and b indicates a maximum shift in Fe3+/ΣFe ratios over the past 3.5 billion years of 0.04 ± 0.03 (2σ).

Extended Data Figure 2 Fe3+/ΣFe versus total Fe for Precambrian ophiolite basalts.

The regression line (dotted grey line) is a linear regression through Precambrian ophiolite basalts with a 95% confidence interval shaded in grey. The slope is not distinguishable from 0 at the 2σ level. If secondary metamorphic reduction occurred in these samples, we would expect samples with less Fe to be consistently lower in Fe3+/ΣFe ratios than samples with more Fe. This is not observed, indicating that such metamorphic reduction has not obviously affected the Fe3+/ΣFe ratios of samples.

Extended Data Table 1 Tukey–HSD pairwise comparison test of average mean ophiolite Fe3+/ΣFe ratios for the given age bins
Extended Data Table 2 Wilcoxon pairwise comparison test (with Holm P-adjustment correction) of average mean ophiolite Fe3+/ΣFe ratios for the given age bins

Supplementary information

Supplementary Table 1

This file contains compiled data from ophiolite basalts. (XLSX 229 kb)

Supplementary Table 2

This file contains compiled data from drilled oceanic crust. (XLSX 126 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolper, D., Keller, C. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018). https://doi.org/10.1038/nature25009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature25009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing