Letter | Published:

Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator

Nature volume 551, pages 601604 (30 November 2017) | Download Citation


A quantum simulator is a type of quantum computer that controls the interactions between quantum bits (or qubits) in a way that can be mapped to certain quantum many-body problems1,2. As it becomes possible to exert more control over larger numbers of qubits, such simulators will be able to tackle a wider range of problems, such as materials design and molecular modelling, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems3. Here we use a quantum simulator composed of up to 53 qubits to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions. We observe a dynamical phase transition after a sudden change of the Hamiltonian, in a regime in which conventional statistical mechanics does not apply4. The qubits are represented by the spins of trapped ions, which can be prepared in various initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with an efficiency of nearly 99 per cent. Such high efficiency means that arbitrary many-body correlations between qubits can be measured in a single shot, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long-range interactions and high connectivity between qubits.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

  2. 2.

    (ed.) Quantum simulation. Nat. Phys. 8, 263–299 (2012)

  3. 3.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2011)

  4. 4.

    Non-equilibrium phase transitions. Physica A 369, 1–28 (2006)

  5. 5.

    et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014)

  6. 6.

    et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014)

  7. 7.

    et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015)

  8. 8.

    et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

  9. 9.

    et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017)

  10. 10.

    Quantum-gas microscopes: a new tool for cold-atom quantum simulators. Natl. Sci. Rev. 3, 170–172 (2016)

  11. 11.

    , & Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015)

  12. 12.

    et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016)

  13. 13.

    et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, (2017)

  14. 14.

    & Effect of long-range interactions on the phase transition of Axelrod’s model. Phys. Rev. E 94, 052149 (2016)

  15. 15.

    , & Cancer as a dynamical phase transition. Theor. Biol. Med. Model. 8, 30 (2011)

  16. 16.

    Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177–221 (1996)

  17. 17.

    , & Relaxation and persistent oscillations of the order parameter in fermionic condensates. Phys. Rev. Lett. 96, 097005 (2006)

  18. 18.

    , & Dynamical quantum phase transitions in the transverse-field Ising model. Phys. Rev. Lett. 110, 135704 (2013)

  19. 19.

    , , & Dynamical quantum phase transitions in spin chains with long-range interactions: merging different concepts of non-equilibrium criticality. Preprint at (2016)

  20. 20.

    Quantum Phase Transitions (Cambridge Univ. Press, 1999)

  21. 21.

    et al. Observation of a dynamical topological phase transition. Preprint at (2016)

  22. 22.

    et al. Direct observation of dynamical quantum phase transitions in an interacting many-body system. Phys. Rev. Lett. 119, 080501 (2017)

  23. 23.

    et al. Observation of prethermalization in long-range interacting spin chains. Sci. Adv. 3, e1700672 (2017)

  24. 24.

    , , & Entanglement area laws for long-range interacting systems. Phys. Rev. Lett. 119, 050501 (2017)

  25. 25.

    ., . & Density-Matrix Renormalization: A New Numerical Method in Physics (Springer, 1999)

  26. 26.

    , & Continuous symmetry breaking in 1D long-range interacting quantum systems. Phys. Rev. Lett. 119, 023001 (2017)

  27. 27.

    & Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)

  28. 28.

    et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583–587 (2013)

  29. 29.

    et al. Prethermalization and persistent order in the absence of a thermal phase transition. Phys. Rev. B 95, 024302 (2017)

  30. 30.

    & Alternatives to eigenstate thermalization. Phys. Rev. Lett. 108, 110601 (2012)

  31. 31.

    , , & Dynamical phase transitions in long-range Hamiltonian systems and Tsallis distributions with a time-dependent index. Phys. Rev. E 78, 040102 (2008)

  32. 32.

    On the computational complexity of Ising spin glass models. J. Phys. A 15, 3241–3253 (1982)

  33. 33.

    et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016)

  34. 34.

    et al. Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009)

  35. 35.

    Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998)

  36. 36.

    et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)

  37. 37.

    et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007)

  38. 38.

    et al. Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 104, 140501 (2010)

  39. 39.

    , & Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70, 052318 (2004)

  40. 40.

    & Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)

  41. 41.

    & Critical behavior of several lattice models with long-range interaction. J. Math. Phys. 10, 1373–1386 (1969)

  42. 42.

    et al. Engineering large Stark shifts for control of individual clock state qubits. Phys. Rev. A 94, 042308 (2016)

  43. 43.

    & Formation probabilities and Shannon information and their time evolution after quantum quench in the transverse-field XY chain. Phys. Rev. B 93, 125139 (2016)

Download references


We acknowledge discussions with M. Cetina, L. Duan, A. Polkovnikov, M. Heyl, M. Maghrebi, P. Titum and J. Iosue. This work is supported by the ARO and AFOSR Atomic and Molecular Physics Programs, the AFOSR MURI on Quantum Measurement and Verification, the IARPA LogiQ programme, the ARO MURI on Modular Quantum Systems, the ARL Center for Distributed Quantum Information, the NSF Quantum Information Science programme, and the NSF Physics Frontier Center at JQI. G.P. is supported by the IC Postdoctoral Research Fellowship Program.

Author information

Author notes

    • Z.-X. Gong

    Present address: Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA.


  1. Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA.

    • J. Zhang
    • , G. Pagano
    • , P. W. Hess
    • , A. Kyprianidis
    • , P. Becker
    • , H. Kaplan
    • , A. V. Gorshkov
    • , Z.-X. Gong
    •  & C. Monroe
  2. IonQ, Inc., College Park, Maryland 20740, USA.

    • C. Monroe


  1. Search for J. Zhang in:

  2. Search for G. Pagano in:

  3. Search for P. W. Hess in:

  4. Search for A. Kyprianidis in:

  5. Search for P. Becker in:

  6. Search for H. Kaplan in:

  7. Search for A. V. Gorshkov in:

  8. Search for Z.-X. Gong in:

  9. Search for C. Monroe in:


J.Z., G.P., P.W.H., A.K., P.B., H.K. and C.M. all contributed to experimental design, construction, data collection and analysis. Z.-X.G. and A.V.G. contributed to the theory for the experiment. All authors contributed to this manuscript.

Competing interests

C.M. is a founding scientist of ionQ, Inc.

Corresponding author

Correspondence to J. Zhang.

Reviewer Information Nature thanks C. Muschik and C. Roos for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.