Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

Abstract

White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles1,2. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion3,4,5, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified6,7,8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical brightness variations in MV Lyr.
Figure 2: Power spectrum and flux distribution of MV Lyr in the deep low state and regular low state.
Figure 3: Schematic depiction of the accretion flow in MV Lyr during phases of magnetically gated accretion cycles.
Figure 4: Magnetically gated accretion instability plane.

Similar content being viewed by others

References

  1. Patterson, J. The DQ Herculis stars. Publ. Astron. Soc. Pacif. 106, 209–238 (1994)

    ADS  Google Scholar 

  2. Cropper, M. The Polars. Space Sci. Rev. 54, 195–295 (1990)

    ADS  Google Scholar 

  3. Syunyaev, R. A. & Shakura, N. I. Disk reservoirs in binary systems and prospects for observing them. Sov. Astron. Lett. 3, 138–141 (1977)

    ADS  Google Scholar 

  4. Spruit, H. C. & Taam, R. E. An instability associated with a magnetosphere–disk interaction. Astrophys. J. 402, 593–604 (1993)

    ADS  Google Scholar 

  5. D’Angelo, C. R. & Spruit, H. C. Accretion discs trapped near corotation. Mon. Not. R. Astron. Soc. 420, 416–429 (2012)

    ADS  Google Scholar 

  6. Patruno, A., Watts, A., Klein Wolt, M., Wijnands, R. & van der Klis, M. 1 Hz flaring in SAX J1808.4–3658: flow instabilities near the propeller stage. Astrophys. J. 707, 1296–1309 (2009)

    ADS  Google Scholar 

  7. Patruno, A. & D’Angelo, C. 1 Hz flaring in the accreting millisecond pulsar NGC 6440 X-2: disk trapping and accretion cycles. Astrophys. J. 771, 94 (2013)

    ADS  Google Scholar 

  8. Bagnoli, T. in’t Zand, J. J. M., D’Angelo, C. R. & Galloway, D. K. A population study of type II bursts in the Rapid Burster. Astrophys. J. 449, 268 (2015)

    ADS  CAS  Google Scholar 

  9. Aspin, C., Reipurth, B., Herczeg, G. J. & Capak, P. The 2008 extreme outburst of the young eruptive variable star EX Lupi. Astrophys. J. 719, L50–L55 (2010)

    ADS  CAS  Google Scholar 

  10. Dhillon, V. S., Jones, D. H. P. & Marsh, T. R. Observations of the eclipsing nova like variable DW Ursae in a low state. Mon. Not. R. Astron. Soc. 266, 859–871 (1994)

    ADS  CAS  Google Scholar 

  11. Groot, P. J., Rutten, R. G. M. R. & Van Paradijs, J. SW Sextantis in an excited, low state. Astron. Astrophys. 368, 183–196 (2001)

    ADS  CAS  Google Scholar 

  12. Gänsicke, B. T. et al. TT Arietis: the low state revisited. Astron. Astrophys. 347, 178–184 (1999)

    ADS  Google Scholar 

  13. Thorstensen, J. R. et al. PG0027+260: an example of a class of cataclysmic variables with mysterious, but consistent, behavior. Astron. J. 102, 272–283 (1991)

    ADS  CAS  Google Scholar 

  14. Honeycutt, R. K. & Kafka, S. Characteristics of high-state/low-state transitions in VY Sculptoris stars. Astron. J. 128, 1279–1293 (2004)

    ADS  CAS  Google Scholar 

  15. Rosino, L., Romano, G. & Marziani, P. Photometric and spectroscopic observations of MV Lyrae from 1968 to 1991. Publ. Astron. Soc. Pacif. 105, 51–58 (1993)

    ADS  Google Scholar 

  16. Hameury, J.-M. & Lasota, J.-P. VY Sculptoris stars as magnetic cataclysmic variables. Astron. Astrophys. 394, 231–239 (2002)

    ADS  Google Scholar 

  17. Leach, R., Hessman, F. V., King, A. R., Stehle, R. & Mattei, J. The light curves of VY Scl stars. Mon. Not. R. Astron. Soc. 305, 225–230 (1999)

    ADS  Google Scholar 

  18. Skillman, D. R., Patterson, J. & Thorstensen, J. R. Superhumps in cataclysmic binaries. IV. MV Lyrae. Publ. Astron. Soc. Pacif. 107, 545–550 (1995)

    ADS  Google Scholar 

  19. Linnell, A. P. et al. MV Lyrae in low, intermediate, and high states. Astrophys. J. 624, 923–933 (2005)

    ADS  CAS  Google Scholar 

  20. Scaringi, S. et al. The universal nature of accretion-induced variability: the rms–flux relation in an accreting white dwarf. Mon. Not. R. Astron. Soc. 421, 2854–2860 (2012)

    ADS  Google Scholar 

  21. Scaringi, S. et al. Accretion-induced variability links young stellar objects, white dwarfs, and black holes. Sci. Adv. 1, e1500686 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  22. Dobrotka, A., Mineshige, S. & Ness, J.-U. Rms–flux relation and fast optical variability simulations of the nova-like system MV Lyr. Mon. Not. R. Astron. Soc. 447, 3162–3169 (2015)

    ADS  Google Scholar 

  23. Hoard, D. W. et al. The hot white dwarf in the cataclysmic variable MV Lyrae. Astrophys. J. 604, 346–356 (2004)

    ADS  CAS  Google Scholar 

  24. Hertfelder, M. & Kley, W. Wave mediated angular momentum transport in astrophysical boundary layers. Astron. Astrophys. 579, A54 (2015)

    ADS  Google Scholar 

  25. D’Angelo, C. R. & Spruit, H. C. Episodic accretion on to strongly magnetic stars. Mon. Not. R. Astron. Soc. 406, 1208–1219 (2010)

    ADS  Google Scholar 

  26. Wynn, G. A., King, A. R. & Horne, K. A magnetic propeller in the cataclysmic variable AE Aquarii. Mon. Not. R. Astron. Soc. 286, 436–446 (1997)

    ADS  Google Scholar 

  27. Knevitt, G., Wynn, G. A., Vaughan, S. & Watson, M. G. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion. Mon. Not. R. Astron. Soc. 437, 3087–3102 (2014)

    ADS  Google Scholar 

  28. Godon, P. et al. An online catalog of cataclysmic variable spectra from the Far-Ultraviolet Spectroscopic Explorer. Astrophys. J. Suppl. Ser. 203, 23 (2012)

    ADS  Google Scholar 

  29. Herbig, G. H. EX Lupi: history and spectroscopy. Astron. J. 133, 2679–2683 (2007)

    ADS  CAS  Google Scholar 

  30. Banzatti, A., Pontoppidan, K. M., Bruderer, S., Muzerolle, J. & Meyer, M. R. Depletion of molecular gas by an accretion outburst in a protoplanetary disk. Astrophys. J. 798, 6 (2015)

    Google Scholar 

  31. Jenkins, J. M. et al. Overview of the Kepler science processing pipeline. Astrophys. J. 713, L87–L91 (2010)

    ADS  Google Scholar 

  32. Gilliland, R. L. et al. Initial characteristics of Kepler short cadence data. Astrophys. J. 713, L160–L163 (2010)

    ADS  Google Scholar 

  33. Baran, A. S. Spurious frequencies in the Kepler short cadence data. Acta Astron. 63, 203–224 (2013)

    ADS  Google Scholar 

  34. Scaringi, S. et al. Broad-band timing properties of the accreting white dwarf MV Lyrae. Mon. Not. R. Astron. Soc. 427, 3396–3405 (2012)

    ADS  Google Scholar 

  35. Frank, J., King, A. & Raine, D. J. Accretion Power in Astrophysics 3rd edn (Cambridge Univ. Press, 2002)

  36. Klúzniak, W. Disk Accretion onto Weakly Magnetized Neutron Stars. PhD thesis, Stanford Univ. (1987)

  37. Panei, J. A., Althaus, L. G. & Benvenuto, O. G. Mass–radius relations for white dwarf stars of different internal compositions. Astron. Astrophys. 353, 970–977 (2000)

    ADS  CAS  Google Scholar 

  38. Meyer, F. & Meyer-Hofmeister, E. Accretion disk evaporation by a coronal siphon flow. Astron. Astrophys. 288, 175–182 (1994)

    ADS  Google Scholar 

  39. Scaringi, S. A physical model for the flickering variability in cataclysmic variables. Mon. Not. R. Astron. Soc. 438, 1233–1241 (2014)

    ADS  Google Scholar 

  40. Dobrotka, A., Ness, J.-U., Mineshige, S. & Nucita, A. A. XMM-Newton observation of MV Lyr and the sandwiched model confirmation. Mon. Not. R. Astron. Soc. 468, 1183–1197 (2017)

    ADS  CAS  Google Scholar 

  41. Godon, P., Sion, E. M., Balman, S. & Blair, W. P. Modifying the standard disk model for the ultraviolet spectral analysis of disk-dominated cataclysmic variables. I. The novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae. Astrophys. J. 846, 52 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  42. Kuijpers, J. & Kuperus, M. A magnetic explanation for the Rapid Burster. Astron. Astrophys. 286, 491–496 (1994)

    ADS  Google Scholar 

  43. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  44. Pavklenko, E. P. MV Lyrae in the last low state in 1995–1996. Odessa Astron. Publ. 9, 38 (1996)

    ADS  Google Scholar 

  45. Lasota, J.-P. The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 45, 449–508 (2001)

    ADS  CAS  Google Scholar 

  46. Baptista, R. & Bortoletto, A. Eclipse mapping of the flickering sources in the dwarf nova V2051 Ophiuchi. Astron. J. 128, 411–425 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. Some of the data were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-Hubble Space Telescope data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. P.J.G. acknowledges support from the Erskine programme run by the University of Canterbury.

Author information

Authors and Affiliations

Authors

Contributions

S.S. analysed the Kepler data, identified the phenomenon, interpreted the results and was the primary author. T.J.M. first proposed that the phenomenon might be magnetically gated accretion and helped to work out the initial parameter space. C.D’A. contributed theoretical analysis of the bursts and created Fig. 4. C.K. carried out AAVSO-based calibration of the Kepler data, created Fig. 1a and estimated the accretion rate in the magnetic gating state. P.J.G. laid out Figs 1 and 2 and provided the literature on nova-likes. All authors shared ideas, interpreted the results, commented and edited the manuscript.

Corresponding author

Correspondence to S. Scaringi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaringi, S., Maccarone, T., D’Angelo, C. et al. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf. Nature 552, 210–213 (2017). https://doi.org/10.1038/nature24653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24653

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing