Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonuclear reactions triggered by lightning discharge

Abstract

Lightning and thunderclouds are natural particle accelerators1. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds2,3, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories4,5,6,7,8,9, by airborne detectors10 and as terrestrial γ-ray flashes from space10,11,12,13,14. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions10,15,16,17,18,19 that produce neutrons and eventually positrons via β+ decay of the unstable radioactive isotopes, most notably 13N, which is generated via 14N + γ → 13N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons7,20,21 and positrons10,22 that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5–1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40–60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron–positron annihilation, providing conclusive evidence of positrons being produced after the lightning.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lightning discharges and subsecond decaying high-energy radiation.
Figure 2: De-excitation γ-ray spectra of the subsecond afterglow.
Figure 3: Count-rate histories of the annihilation signal.
Figure 4: γ-ray spectra during the prolonged annihilation signal.

Similar content being viewed by others

References

  1. Dwyer, J. R., Smith, D. M. & Cummer, S. A. High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev. 173, 133–196 (2012)

    Article  ADS  CAS  Google Scholar 

  2. Gurevich, A. V., Milikh, G. M. & Roussel-Dupré, R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165, 463–468 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Dwyer, J. R. The relativistic feedback discharge model of terrestrial gamma ray flashes. J. Geophys. Res. 117, A02308 (2012)

    ADS  Google Scholar 

  4. Torii, T., Takeishi, M. & Hosono, T. Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity. J. Geophys. Res. 107, 4324 (2002)

    Article  Google Scholar 

  5. Dwyer, J. R. et al. A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys. Res. Lett. 31, L05119 (2004)

    ADS  Google Scholar 

  6. Tsuchiya, H. et al. Detection of high-energy gamma rays from winter thunderclouds. Phys. Rev. Lett. 99, 165002 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Chilingarian, A. et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons. Phys. Rev. D 82, 043009 (2010)

    Article  ADS  Google Scholar 

  8. Dwyer, J. R. et al. Observation of a gamma-ray flash at ground level in association with a cloud-to-ground lightning return stroke. J. Geophys. Res. 117, A10303 (2012)

    ADS  Google Scholar 

  9. Tsuchiya, H. et al. Observation of thundercloud-related gamma rays and neutrons in Tibet. Phys. Rev. D 85, 092006 (2012)

    Article  ADS  Google Scholar 

  10. Dwyer, J. R. et al. Positron clouds within thunderstorms. J. Plasma Phys. 81, 475810405 (2015)

    Article  Google Scholar 

  11. Fishman, G. J. et al. Discovery of intense gamma-ray flashes of atmospheric origin. Science 264, 1313–1316 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Smith, D. M., Lopez, L. I., Lin, R. P. & Barrington-Leigh, C. P. Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307, 1085–1088 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Tavani, M. et al. Terrestrial gamma-ray flashes as powerful particle accelerators. Phys. Rev. Lett. 106, 018501 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Briggs, M. S. et al. First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor. J. Geophys. Res. 115, A07323 (2010)

    Article  ADS  Google Scholar 

  15. Babich, L. P. Generation of neutrons in giant upward atmospheric discharges. Sov. JETP Lett. 84, 285–288 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Babich, L. P. Neutron generation mechanism correlated with lightning discharges. Geomagn. Aeron. 47, 664–670 (2007)

    Article  ADS  Google Scholar 

  17. Carlson, B. E., Lehtinen, N. G. & Inan, U. S. Neutron production in terrestrial gamma ray flashes. J. Geophys. Res. 115, A00E19 (2010)

    ADS  Google Scholar 

  18. Babich, L. P., Bochkov, E. I., Kutsyk, I. M. & Rassoul, H. K. Analysis of fundamental interactions capable of producing neutrons in thunderstorms. Phys. Rev. D 89, 093010 (2014)

    Article  ADS  Google Scholar 

  19. Babich, L. P., Bochkov, E. I., Kutsyk, I. M. & Roussel-Dupré, R. A. Localization of the source of terrestrial neutron bursts detected in thunderstorm atmosphere. J. Geophys. Res. 115, A00E28 (2010)

    ADS  Google Scholar 

  20. Shah, G. N., Razdan, H., Ali, Q. M. & Bhat, C. L. Neutron generation in lightning bolts. Nature 313, 773–775 (1985)

    Article  ADS  CAS  Google Scholar 

  21. Gurevich, A. V. et al. Strong flux of low-energy neutrons produced by thunderstorms. Phys. Rev. Lett. 108, 125001 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Umemoto, D. et al. On-ground detection of an electron-positron annihilation line from thunderclouds. Phys. Rev. E 93, 021201(R) (2016)

    Article  ADS  Google Scholar 

  23. Tsuchiya, H. et al. Long-duration γ ray emissions from 2007 and 2008 winter thunderstorms. J. Geophys. Res. 116, D09113 (2011)

    ADS  Google Scholar 

  24. Hare, B. M. et al. Ground-level observation of a terrestrial gamma ray flash initiated by a triggered lightning. J. Geophys. Res. 121, 6511–6533 (2016)

    CAS  Google Scholar 

  25. Rakov, V. A. & Uman, M. A. Lightning: Physics and Effects (Cambridge Univ. Press, 2003)

  26. Chen, L., Zhang, Q., Hou, W. & Tao, Y. On the field-to-current conversion factors for large bipolar lightning discharge events in winter thunderstorms in Japan. J. Geophys. Res. 120, 6898–6907 (2015)

    Google Scholar 

  27. Wu, T. et al. Large bipolar lightning discharge events in winter thunderstorms in Japan. J. Geophys. Res. 119, 555–566 (2014)

    Google Scholar 

  28. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181–235 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Goto, Y. & Narita, K. Observations of winter lightning to an isolate tower. Res. Lett. Atmos. Elect. 12, 57–60 (1992)

    Google Scholar 

  30. Agostinelli, S. et al. Geant4 — a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003)

    Article  ADS  CAS  Google Scholar 

  31. Rakov, V. A. A review of positive and bipolar lightning discharges. Bull. Am. Meteorol. Soc. 84, 767–776 (2003)

    Article  ADS  Google Scholar 

  32. Narita, K., Goto, Y., Komuro, H. & Sawada, S. Bipolar lightning in winter at Maki, Japan. J. Geophys. Res. 94, 13191–13195 (1989)

    Article  ADS  Google Scholar 

  33. Fleischer, R. L. Search for neutron generation by lightning. J. Geophys. Res. 80, 5005–5009 (1975)

    Article  ADS  CAS  Google Scholar 

  34. Shyam, A. & Kaushik, T. C. Observation of neutron bursts associated with atmospheric lightning discharge. J. Geophys. Res. 104, 6867–6869 (1999)

    Article  ADS  Google Scholar 

  35. Ishtiaq, P. M., Mufti, S., Darzi, M. A., Mir, T. A. & Shah, G. N. Observation of 2.45 MeV neutrons correlated with natural atmospheric lightning discharges by lead-free Gulmarg neutron monitor. J. Geophys. Res. 121, 692–703 (2016)

    CAS  Google Scholar 

  36. Kuroda, Y. et al. Observation of gamma ray bursts at ground level under the thunderclouds. Phys. Lett. B 758, 286–291 (2016)

    Article  ADS  CAS  Google Scholar 

  37. Babich, L. P., Bochkov, E. I., Dwyer, J. R., Kutsyk, I. M. & Zalyalov, A. N. Numerical analysis of 2010 high-mountain (Tien-Shan) experiment on observations of thunderstorm-related low-energy neutron emissions. J. Geophys. Res. 118, 7905–7912 (2013)

    Article  CAS  Google Scholar 

  38. Babich, L. P., Bochkov, E. I., Kutsyk, I. M. & Zalyalov, A. N. On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them. Sov. JETP Lett. 97, 291–296 (2013); erratum 97, 505 (2013); erratum 99, 242 (2014)

    Article  ADS  CAS  Google Scholar 

  39. Chilingarian, A., Bostanjyan, N., Karapetyan, T. & Vanyan, L. Remarks on recent results on neutron production during thunderstorms. Phys. Rev. D 86, 093017 (2012)

    Article  ADS  Google Scholar 

  40. International Atomic Energy Agency. Handbook on Photonuclear Data for Applications: Cross-sections and Spectra: Final Report of a Co-ordinated Research Project 1996–1999 52–75 (IAEA, 2000)

  41. Shibata, K. et al. JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48, 1–30 (2011)

    Article  CAS  Google Scholar 

  42. Lamarsh, J. R. & Baratta, A. J. Introduction to Nuclear Engineering 3rd edn, Ch. 3 (IAEA, 2001)

  43. Prantzos, N. et al. The 511 keV emission from positron annihilation in the Galaxy. Rev. Mod. Phys. 83, 1001–1056 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the radiation safety group of the Kashiwazaki-Kariwa nuclear power station, TEPCO Inc., for providing observation sites, H. Miyahara, N. Kawanaka and H. Ohgaki for discussions, H. Sakurai, M. Niikura and the Sakurai group members at RIKEN Nishina Center for providing Bi4Ge3O12 scintillation crystals, T. Tamagawa for project support, G. Bowers, M. Kamogawa and D. Smith for suggestions on our interpretation, S. Otsuka and H. Kato for supporting the detector developments, and the RIKEN Advanced Center for Computing and Communication for use of the HOKUSAI GreatWave supercomputing system for Monte Carlo simulations. This research is supported by JSPS/MEXT KAKENHI grant numbers 15K05115, 15H03653 and 16H06006, by SPIRITS 2017 and Hakubi projects of Kyoto University, and by the joint research programme of the Institute for Cosmic Ray Research (ICRR), The University of Tokyo. Our project is also supported by crowdfunding (‘Thundercloud Project’, using the academic crowdfunding platform ‘academist’), and we are grateful to Y. Shikano, Y. Araki, M. T. Hayashi, N. Matsumoto, T. Enoto, K. Hayashi, S. Koga, T. Hamaji, Y. Torisawa, S. Sawamura, J. Purser, S. Suehiro, S. Nakane, M. Konishi, H. Takami, T. Sawara and all of the backers of Thundercloud Project. We are grateful to M. Sakano of Wise Babel Ltd for linguistic help and to the ‘adachi design laboratory’ for supporting the crowdfunding acvitity. The background image in Fig. 1 was provided by the Geospatial Information Authority of Japan.

Author information

Authors and Affiliations

Authors

Contributions

T.E., Y.W., Y.F., K.O., K.N., T.Y., T.N. and H.T. were responsible for the detector developments, data analyses and interpretation; T.E. is the project leader and wrote the draft of the manuscript; Y.W. made a major contribution to the detector development, installation and, in particular, analysis; Y.F. led the Monte Carlo simulations using Geant4; K.N. led the installation of the instruments at Kashiwazaki-Kariwa in 2016 and the laboratory experiment outlined in Methods section ‘Initial flash’; T.Y. led the development of the new data acquisition system after 2015; D.U. provided the data from 2012; and M.S., Y.S., K.M. and H.T. contributed to the data interpretation.

Corresponding author

Correspondence to Teruaki Enoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks L. Babich and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Location of the observation sites.

a, Visible image of the geostationary satellite Himawari 8 at 06:00 utc on 6 February 2017. The square and circle indicate Kashiwazaki-Kariwa and Kuju, respectively. bd, Precipitation intensity map between 08:20 and 08:40 utc on the same day, retrieved from the radar system of the Japan Meteorological Agency. Orange squares indicate Kashiwazaki-Kariwa nuclear power station.

Extended Data Figure 2 Detector response to the initial radiation flash.

ac, Time histories of the maximum (black) and minimum (red) ADC values in the ADC-sampled waveforms of the photons detected with detectors A (a), B (b) and C (c). Normally, the minimum value is equal to the baseline (about 0 V at ADC = 2,050 ch), but undershoot was observed in our experiments (see Methods section ‘Initial flash’). An energy of 10 MeV corresponds to ADC increases of 1,395 ch, 1,218 ch and 404 ch for detectors A, B and C, respectively. The data gap for detector A is due to overflow of memory buffer in the ADC board.

Extended Data Figure 3 Illustration of lightning-triggered physical processes.

a, Physical processes during a chain of radiation events induced by the photonuclear reactions. b, Diffusion of neutrons produced in lightning and drift of the positron-emitting cloud.

Extended Data Figure 4 Neutron cross-section on nitrogen and time profile of scattered neutrons.

a, Neutron cross-section on 14N (black) as a function of neutron kinetic energy40,41, including elastic (green) and inelastic (blue) scattering, charged-particle production (yellow) and neutron capture (red). b, Kinetic energy (black) and relative number of neutrons (red) as a function of time. The initial energy of neutrons is assumed to be 10 MeV and the initial number of neutrons is normalized to 1. Dashed lines indicate the times of the nth scatterings.

Extended Data Figure 5 De-excitation γ-ray spectra compared with simulations.

ac, Background-subtracted γ-ray spectra of the subsecond γ-ray afterglow, with black crosses indicating ±1σ errors, for detectors A (a), B (b) and C (c). The source events are extracted for the period t = 40–100 ms for detector A and t = 20–200 ms for detectors B and C. The curves show the Monte Carlo simulations of de-excitation γ-rays from atmospheric nitrogen (green dashed line), surrounding materials (blue dashed line), the detector itself (magenta dashed line) and their total (red solid line). The simulated spectra are normalized by the total counts above 1 MeV.

Extended Data Figure 6 Observed annihilation spectrum and simulated models.

The background-subtracted spectrum in the delayed phase for detector A, accumulated over t = 11.1–62.8 s, is plotted, with black crosses indicating ±1σ errors. The simulated model curves are overlaid, for assumed distances to the base of the positron-emitting cloud of 0 m (that is, the detector is within the cloud; red), 40 m (green), 80 m (blue) and 160 m (magenta). The models are normalized by the total counts in the 0.4–0.6-MeV band.

Extended Data Table 1 Specifications of our detectors and values obtained

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enoto, T., Wada, Y., Furuta, Y. et al. Photonuclear reactions triggered by lightning discharge. Nature 551, 481–484 (2017). https://doi.org/10.1038/nature24630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24630

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing