Galaxy growth in a massive halo in the first billion years of cosmic history

Abstract

According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field1,2,3. Observing these structures during their period of active growth and assembly—the first few hundred million years of the Universe—is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far4,5. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey6. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe7. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Continuum, [C II] and [O III] emission from SPT0311−58 and the inferred source-plane structure.
Figure 2: Mass measurements for high-redshift galaxies.
Figure 3: Halo masses for rare, high-redshift, massive galaxies.

References

  1. 1

    Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  2. 2

    Cole, S., Helly, J., Frenk, C. S. & Parkinson, H. The statistical properties of Λ cold dark matter halo formation. Mon. Not. R. Astron. Soc. 383, 546–556 (2008)

    ADS  Article  Google Scholar 

  3. 3

    Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013)

    ADS  Article  Google Scholar 

  4. 4

    Riechers, D. A. et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013)

    ADS  CAS  Article  PubMed  Google Scholar 

  5. 5

    Vieira, J. D. et al. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 495, 344–347 (2013)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. 6

    Strandet, M. L. et al. ISM properties of a massive dusty star-forming galaxy discovered at z 7. Astrophys. J. 842, L15 (2017)

    ADS  Article  Google Scholar 

  7. 7

    Cormier, D. et al. The Herschel dwarf galaxy survey. I. Properties of the low-metallicity ISM from PACS spectroscopy. Astron. Astrophys. 578, A53 (2015)

    Article  Google Scholar 

  8. 8

    Carlstrom, J. E. et al. The 10 meter South Pole telescope. Publ. Astron. Soc. Pacif. 123, 568–581 (2011)

    ADS  Article  Google Scholar 

  9. 9

    Mocanu, L. M . et al. Extragalactic millimeter-wave point-source catalog, number counts and statistics from 771 deg2 of the SPT-SZ survey. Astrophys. J. 779, 61 (2013)

    ADS  Article  Google Scholar 

  10. 10

    Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

  11. 11

    Casey, C. M., Narayanan, D. & Cooray, A. Dusty star-forming galaxies at high redshift. Phys. Rep. 541, 45–161 (2014)

    ADS  Article  Google Scholar 

  12. 12

    Hezaveh, Y. D. et al. Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81. Astrophys. J. 823, 37 (2016)

    ADS  Article  Google Scholar 

  13. 13

    Mihos, J. C. & Hernquist, L. Gasdynamics and starbursts in major mergers. Astrophys. J. 464, 641–663 (1996)

    ADS  Article  Google Scholar 

  14. 14

    Cooray, A. et al. HerMES: the rest-frame UV emission and a lensing model for the z = 6.34 luminous dusty starburst galaxy HFLS3. Astrophys. J. 790, 40 (2014)

    ADS  Article  Google Scholar 

  15. 15

    Decarli, R. et al. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017)

    ADS  CAS  Article  PubMed  Google Scholar 

  16. 16

    Casey, C. M. et al. Near-infrared MOSFIRE spectra of dusty star-forming galaxies at 0.2 < z < 4. Astrophys. J. 840, 101 (2017)

    ADS  Article  Google Scholar 

  17. 17

    Bouwens, R. J. et al. UV luminosity functions at redshifts z 4 to z 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015)

    ADS  Article  Google Scholar 

  18. 18

    Ferkinhoff, C. et al. First detection of the [O III] 88 μm line at high redshifts: characterizing the starburst and narrow-line regions in extreme luminosity systems. Astrophys. J. 714, L147–L151 (2010)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Brauher, J. R., Dale, D. A. & Helou, G. A compendium of far-infrared line and continuum emission for 227 galaxies observed by the Infrared Space Observatory. Astrophys. J. Suppl. Ser. 178, 280–301 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Inoue, A. K. et al. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch. Science 352, 1559–1562 (2016)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. 21

    Lebouteiller, V. et al. Physical conditions in the gas phases of the giant H II region LMC-N 11 unveiled by Herschel. I. Diffuse [C II] and [O III] emission in LMC-N 11B. Astron. Astrophys. 548, A91 (2012)

    Article  Google Scholar 

  22. 22

    Díaz-Santos, T. et al. Explaining the [C II]157.7 μm deficit in luminous infrared galaxies—first results from a Herschel/PACS study of the GOALS sample. Astrophys. J. 774, 68 (2013)

    ADS  Article  Google Scholar 

  23. 23

    Oteo, I. et al. Witnessing the birth of the red sequence: ALMA high-resolution imaging of [C II] and dust in two interacting ultra-red starbursts at z = 4.425. Astrophys. J. 827, 34 (2016)

    ADS  Article  Google Scholar 

  24. 24

    Spilker, J. S. et al. ALMA imaging and gravitational lens models of South Pole telescope—selected dusty, star-forming galaxies at high redshifts. Astrophys. J. 826, 112 (2016)

    ADS  Article  Google Scholar 

  25. 25

    Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Bothwell, M. S. et al. A survey of molecular gas in luminous sub-millimetre galaxies. Mon. Not. R. Astron. Soc. 429, 3047–3067 (2013)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Aravena, M. et al. A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z > 2. Mon. Not. R. Astron. Soc. 457, 4406–4420 (2016)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Harrison, I. & Hotchkiss, S. A consistent approach to falsifying ΛCDM with rare galaxy clusters. J. Cosmology Astropart. Phys. 7, 022 (2013)

    ADS  Article  Google Scholar 

  29. 29

    Weiß, A. et al. Highly-excited CO emission in APM 08279+5255 at z = 3.9. Astron. Astrophys. 467, 955–969 (2007)

    ADS  Article  Google Scholar 

  30. 30

    Weiß, A. et al. ALMA redshifts of millimeter-selected galaxies from the SPT survey: the redshift distribution of dusty star-forming galaxies. Astrophys. J. 767, 88 (2013)

    ADS  Article  Google Scholar 

  31. 31

    Strandet, M. L. et al. The redshift distribution of dusty star-forming galaxies from the SPT survey. Astrophys. J. 822, 80 (2016)

    ADS  Article  Google Scholar 

  32. 32

    Hezaveh, Y. D. et al. ALMA observations of SPT-discovered, strongly lensed, dusty, star-forming galaxies. Astrophys. J. 767, 132 (2013)

    ADS  Article  Google Scholar 

  33. 33

    Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer space telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004)

    ADS  Article  Google Scholar 

  34. 34

    Ashby, M. L. N. et al. SEDS: the Spitzer extended deep survey. Survey design, photometry, and deep IRAC source counts. Astrophys. J. 769, 80 (2013)

    ADS  Article  Google Scholar 

  35. 35

    Schuster, M. T., Marengo, M. & Patten, B. M. IRACproc: a software suite for processing and analyzing Spitzer/IRAC data. Proc. SPIE 6270, 627020 (2006)

    Article  Google Scholar 

  36. 36

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996)

    ADS  Article  Google Scholar 

  37. 37

    Hook, I. M. et al. The Gemini-North multi-object spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pacif. 116, 425–440 (2004)

    ADS  Article  Google Scholar 

  38. 38

    Eikenberry, S. et al. FLAMINGOS-2: the facility near-infrared wide-field imager and multi-object spectrograph for Gemini. Proc. SPIE 8446, 84460I (2012)

    Article  Google Scholar 

  39. 39

    Warner, C ., Packham, C ., Eikenberry, S. S. & Gonzalez, A. GPUs and Python: a recipe for lightning-fast data pipelines. ASP Conf. Ser. 461, 53–56 (2012)

    ADS  Google Scholar 

  40. 40

    Warner, C ., Eikenberry, S. S ., Gonzalez, A. H. & Packham, C. Redefining the data pipeline using GPUs. ASP Conf. Ser. 475, 79–82 (2013)

    ADS  Google Scholar 

  41. 41

    Ma, J. et al. Stellar masses and star formation rates of lensed, dusty, star-forming galaxies from the SPT survey. Astrophys. J. 812, 88 (2015)

    ADS  Article  Google Scholar 

  42. 42

    Suyu, S. H., Marshall, P. J., Hobson, M. P. & Blandford, R. D. A Bayesian analysis of regularized source inversions in gravitational lensing. Mon. Not. R. Astron. Soc. 371, 983–998 (2006)

    ADS  Article  Google Scholar 

  43. 43

    Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008)

    ADS  Article  Google Scholar 

  44. 44

    Burgarella, D., Buat, V. & Iglesias-Páramo, J. Star formation and dust attenuation properties in galaxies from a statistical ultraviolet-to-far-infrared analysis. Mon. Not. R. Astron. Soc. 360, 1413–1425 (2005)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Noll, S. et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys. 507, 1793–1813 (2009)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

    ADS  Article  Google Scholar 

  47. 47

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    ADS  Article  Google Scholar 

  48. 48

    Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000)

    ADS  Article  Google Scholar 

  50. 50

    Leitherer, C., Li, I.-H., Calzetti, D. & Heckman, T. M. Global far-ultraviolet (912–1800 Å) properties of star-forming galaxies. Astrophys. J. Suppl. Ser. 140, 303–329 (2002)

    ADS  Article  Google Scholar 

  51. 51

    Blain, A. W., Barnard, V. E. & Chapman, S. C. Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts. Mon. Not. R. Astron. Soc. 338, 733–744 (2003)

    ADS  Article  Google Scholar 

  52. 52

    Hopwood, R. et al. Spitzer imaging of herschel-atlas gravitationally lensed submillimeter sources. Astrophys. J. 728, L4 (2011)

    ADS  Article  Google Scholar 

  53. 53

    Lo Faro, B. et al. The complex physics of dusty star-forming galaxies at high redshifts as revealed by Herschel and Spitzer. Astrophys. J. 762, 108 (2013)

    ADS  Article  Google Scholar 

  54. 54

    Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009)

    ADS  Article  Google Scholar 

  55. 55

    Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010)

    ADS  CAS  Article  Google Scholar 

  56. 56

    Wang, R. et al. CO (2–1) line emission in redshift 6 quasar host galaxies. Astrophys. J. 739, L34 (2011)

    ADS  Article  Google Scholar 

  57. 57

    Wang, R. et al. Far-infrared and molecular CO emission from the host galaxies of faint quasars at z 6. Astron. J. 142, 101 (2011)

    ADS  Article  Google Scholar 

  58. 58

    Walter, F. et al. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field. Nature 486, 233–236 (2012)

    ADS  CAS  Article  Google Scholar 

  59. 59

    Watson, D. et al. A dusty, normal galaxy in the epoch of reionization. Nature 519, 327–330 (2015)

    ADS  CAS  Article  PubMed  Google Scholar 

  60. 60

    Venemans, B. P. et al. Bright [C II] and dust emission in three z > 6.6 quasar host galaxies observed by ALMA. Astrophys. J. 816, 37 (2016)

    ADS  Article  Google Scholar 

  61. 61

    Venemans, B. et al. The compact, 1 kpc host galaxy of a quasar at a redshift of 7.1. Astrophys. J. 837, 146 (2017)

    ADS  Article  Google Scholar 

  62. 62

    Laporte, N. et al. Dust in the reionization era: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. 837, L21 (2017)

    ADS  Article  Google Scholar 

  63. 63

    Walter, F. et al. Molecular gas in the host galaxy of a quasar at redshift z = 6.42. Nature 424, 406–408 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  64. 64

    Riechers, D. A. et al. A massive molecular gas reservoir in the z = 5.3 submillimeter galaxy AzTEC-3. Astrophys. J. 720, L131–L136 (2010)

    ADS  CAS  Article  Google Scholar 

  65. 65

    Wang, R. et al. Molecular gas in z 6 quasar host galaxies. Astrophys. J. 714, 699–712 (2010)

    ADS  CAS  Article  Google Scholar 

  66. 66

    Wang, R. et al. Star formation and gas kinematics of quasar host galaxies at z 6: new insights from ALMA. Astrophys. J. 773, 44 (2013)

    ADS  Article  Google Scholar 

  67. 67

    Rawle, T. D. et al. [C II] and 12CO(1–0) emission maps in HLSJ091828.6+514223: a strongly lensed interacting system at z = 5.24. Astrophys. J. 783, 59 (2014)

    ADS  Article  Google Scholar 

  68. 68

    Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005)

    ADS  CAS  Article  Google Scholar 

  69. 69

    Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013)

    ADS  CAS  Article  Google Scholar 

  70. 70

    Hayward, C. C. & Hopkins, P. F. How stellar feedback simultaneously regulates star formation and drives outflows. Mon. Not. R. Astron. Soc. 465, 1682–1698 (2017)

    ADS  CAS  Article  Google Scholar 

  71. 71

    Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 688, 709–728 (2008)

    ADS  CAS  Article  Google Scholar 

  72. 72

    Hezaveh, Y. D. & Holder, G. P. Effects of strong gravitational lensing on millimeter-wave galaxy number counts. Astrophys. J. 734, 52–59 (2011)

    ADS  Article  Google Scholar 

  73. 73

    Miller, T. B., Hayward, C. C., Chapman, S. C. & Behroozi, P. S. The bias of the submillimetre galaxy population: SMGs are poor tracers of the most-massive structures in the z 2 Universe. Mon. Not. R. Astron. Soc. 452, 878–883 (2015)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work incorporates observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI) operated by AURA. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The SPT is supported by the NSF through grant PLR-1248097, with partial support through PHY-1125897, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. Supporting observations were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, under a cooperative agreement with the NSF on behalf of the Gemini partnership of NSF (USA), NRC (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) and Ministério da Ciência, Tecnologia e Inovação (Brazil). D.P.M., J.S.S., J.D.V., K.C.L. and J.S. acknowledge support from the US NSF under grant AST-1312950. D.P.M. was partially supported by NASA through grant HST-GO-14740 from the Space Telescope Science Institute. K.C.L. was partially supported by SOSPA4-007 from the National Radio Astronomy Observatory. The Flatiron Institute is supported by the Simons Foundation. J.D.V. acknowledges support from an A. P. Sloan Foundation Fellowship. Y.D.H. is a Hubble fellow.

Author information

Affiliations

Authors

Contributions

D.P.M. proposed the ALMA [C ii] and [O iii] line observations and analysed all ALMA data. J.S.S. performed the lens modelling. C.C.H. led the rareness analysis. M.L.N.A., M.B.B., S.C.C., A.H.G., J.M., K.M.R. and B.S. provided optical and infrared data reduction and de-convolution. K.A.P. and J.D.V. performed SED modelling of the sources and lens. A.W. performed joint dust and line modelling of high-redshift targets. D.P.M. wrote the manuscript. J.S.S., C.C.H., D.P.M., S.L., K.A.P. and J.D.V. prepared the figures. All authors discussed the results and provided comments on the paper. Authors are ordered alphabetically after J.D.V.

Corresponding author

Correspondence to D. P. Marrone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. Davé and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 ALMA continuum images of SPT0311−58.

ad, Continuum images in ALMA bands 3 (a), 6 (b), 7 (c) and 8 (d), corresponding to rest-frame wavelengths of 380 μm, 160 μm, 110 μm and 90 μm, respectively. Note that the resolution in a is a factor of roughly ten worse than in bd, and the displayed field of view is also larger by a factor of four. Contours at 10%, 30% and 90% of the image peak in band 6 are shown in a for scale. The ALMA synthesized beam (full-width at half-maximum) is represented as a hatched ellipse in the corner of each image.

Extended Data Figure 2 Infrared and optical imaging of SPT0311−58.

8″ × 8″ thumbnails of SPT0311−58 in the observed optical and infrared filters are shown. ALMA band 6 continuum contours at 30% and 4% of the image peak are shown in blue; the ALMA synthesized beam is depicted as a blue ellipse in the corner of each image.

Extended Data Figure 3 Optical, infrared and millimetre-wavelength image of SPT0311−58.

The field around SPT0311−58 is shown, as seen with ALMA and HST at 1.3 mm (ALMA band 6; red), 1,300 nm (combined HST/WFC3 F125W and F160W filters; green) and 700 nm (combined HST/ACS F606W and F775W filters; blue). For emission from z = 6.9, no emission should be visible in the ACS filters owing to the opacity of the neutral intergalactic medium, whereas the other filters correspond to rest-frame 160 nm and 160 μm.

Extended Data Figure 4 De-blending of the optical and infrared images.

Left to right, sky image, model and residual images. Top to bottom, HST/WFC3 F125W, Spitzer/IRAC 3.6 μm and Spitzer/IRAC 4.5 μm data. The ALMA band 6 contours are shown in the left and right columns; the red circles in the right column show the photometric extraction regions for the Spitzer/IRAC images.

Extended Data Figure 5 Gravitational lensing model of the dust continuum emission in SPT0311−58.

For each continuum wavelength for which we have suitable data, we reconstruct the source-plane emission as described in Methods section ‘Gravitational lens modelling’. For each wavelength, from left to right, we show the ‘dirty’ (not de-convolved) image of the data, the dirty image of the model, the model residuals and the source-plane reconstruction. Because the images of the data are not de-convolved, the structure far from the object is due to side lobes in the synthesized beam, and should be reproduced by the models. The image-plane region modelled is evident in the residuals, and results in the ‘noise’ in the source-plane reconstructions. Contours in the residual panels are drawn in steps of ±2σ. The lensing caustics are shown in each source-plane panel (ellipse and diamond). The lens parameters are determined independently at 90 μm and 160 μm; at 110 μm we adopt the parameters of the 160-μm model.

Extended Data Figure 6 Gravitational lensing model of the [C II] line in SPT0311−58.

For each channel (40 km s−1 wide), we reconstruct the source-plane emission using the lens parameters determined from fitting to the rest-frame 160-μm (ALMA band 6) continuum data (Methods section ‘Gravitational lens modelling’). The four images for each channel are as in Extended Data Fig. 5.

Extended Data Figure 7 Optical to submillimetre-wavelength SED modelling for SPT0311−58 E, SPT0311−58 W and the lens galaxy.

The photometric data in Extended Data Tables 2 and 3 for the three components at the position of SPT0311−58 are compared to the models determined using the CIGALE SED modelling code. The lens is modelled assuming a redshift of zphot = 1.43, as estimated with the photometric redshift code EAZY. Upper limits are shown at the 1σ threshold and error bars represent 1σ uncertainties.

Extended Data Table 1 ALMA observations
Extended Data Table 2 Optical and infrared photometry
Extended Data Table 3 Far-infrared photometry

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marrone, D., Spilker, J., Hayward, C. et al. Galaxy growth in a massive halo in the first billion years of cosmic history. Nature 553, 51–54 (2018). https://doi.org/10.1038/nature24629

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.