Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Halogens in chondritic meteorites and terrestrial accretion

Abstract

Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15–37 times lower, respectively, than previously reported and usually accepted estimates1. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass2,3,4,5, cannot solely account for present-day terrestrial halogen inventories6,7. It is estimated that 80–90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs7,8 and have not undergone the extreme early loss observed in atmosphere-forming elements9. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases10, the efficient extraction of halogen-rich fluids6 from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion5,11,12,13,14.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Br/Cl and I/Cl for chondrites and planetary materials.
Figure 2: Br and I versus Cl abundance in carbonaceous, enstatite, ordinary and Rumuruti chondrites.
Figure 3: CI-chondrite and Mg-normalized BSE abundances as a function of 50% TC.

Similar content being viewed by others

References

  1. Dreibus, G., Spettel, B. & Wänke, H. Halogens in meteorites and their primordial abundances. Phys. Chem. Earth 11, 33–38 (1979)

    Article  Google Scholar 

  2. Chou, C.-L. Fractionation of siderophile elements in the Earth’s upper mantle. Proc. Lunar Planet. Sci. Conf. IX, 219–230 (1978)

    ADS  Google Scholar 

  3. Day, J. M. D., Brandon, A. D. & Walker, R. J. Highly siderophile elements in Earth, Mars, the Moon & Asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, Z. & Becker, R. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Schönbächler, M., Carlson, R., Horan, M., Mock, T. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of the Earth. Science 328, 884–887 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Aiuppa, A., Baker, D. R. & Webster, J. D. Halogens in volcanic systems. Chem. Geol. 263, 1–18 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Kendrick, M. A. et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat. Geosci. 10, 222–228 (2017)

    Article  ADS  CAS  Google Scholar 

  8. Burgess, R., Layzelle, E., Turner, G. & Harris, J. W. Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet. Sci. Lett. 197, 193–203 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Pepin, R. O. & Porcelli, D. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250, 470–485 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Allègre, C. J., Hofmann, A. W. & O’Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    Article  ADS  Google Scholar 

  11. Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014)

    Article  ADS  CAS  Google Scholar 

  12. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Halliday, A. N. The origin of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013)

    Article  ADS  CAS  Google Scholar 

  14. Elkins-Tanton, L. T. Formation of early water oceans on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Allègre, C. J., Poirier, J. P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995)

    Article  ADS  Google Scholar 

  16. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Kramers, J. D. Volatile element abundance patterns and an early liquid water ocean on Earth. Precambr. Res. 126, 379–394 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Armytage, R. M. G., Jephcoat, A. P., Bouhifd, M. A. & Porcelli, D. Metal-silicate partitioning of iodine at high pressures and temperatures: implications for the Earth’s core and 129*Xe budgets. Earth Planet. Sci. Lett. 373, 140–149 (2013)

    Article  ADS  CAS  Google Scholar 

  19. McDonough, W. F. in Treatise On Geochemistry 547–568 (Elsevier, 2003)

  20. Sharp, Z. D. & Draper, D. S. The chlorine abundance of Earth: implications for a habitable planet. Earth Planet. Sci. Lett. 369–370, 71–77 (2013)

    Article  ADS  CAS  Google Scholar 

  21. Zolotov, M. Y. & Mironenko, M. Hydrogen chloride as a source of acid fluids in parent bodies of chondrites. Lunar Planet. Sci. Conf. XXXVIII, abstr. 2340 (2007)

    ADS  Google Scholar 

  22. Krähenbühl, U., Morgan, J. W., Ganapathy, R. & Anders, E. Abundance of 17 trace elements in carbonaceous chondrites. Geochim. Cosmochim. Acta 37, 1353–1370 (1973)

    Article  ADS  Google Scholar 

  23. Allen, R. O. J. & Reed, G. W. J. Cl, Br and I in chondrites. Eos 46, 123–124 (1965)

    Google Scholar 

  24. Sharp, Z. D. et al. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446, 1062–1065 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Barrat, J. A. et al. Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta 83, 79–92 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Sharp, Z. D. et al. The chlorine isotope composition of chondrites and Earth. Geochim. Cosmochim. Acta 107, 189–204 (2013)

    Article  ADS  CAS  Google Scholar 

  27. Reed, G. W. J. & Allen, R. O. J. Halogens in chondrites. Geochim. Cosmochim. Acta 30, 779–800 (1966)

    Article  ADS  CAS  Google Scholar 

  28. McDonough, W. F., Sun, S., Ringwood, A., Jagoutz, E. & Hofmann, A. W. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 56, 1001–1012 (1992)

    Article  ADS  CAS  Google Scholar 

  29. Palme, H. & O’Neill, H. S. C. in Treatise on Geochemistry 1–38 (Elsevier, 2003)

  30. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313/314, 56–66 (2012)

    Article  ADS  CAS  Google Scholar 

  32. Humayun, M. & Cassen, P. Processes determining the volatile abundance of the Earth and Moon. In The Origin of the Earth and Moon (eds Canup, R. M. & Righter, K. ) 3–23 (Arizona Univ. Press, 2000)

  33. Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355/356, 244–254 (2012)

    Article  ADS  CAS  Google Scholar 

  34. Ruzié-Hamilton, L. et al. Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation. Chem. Geol. 437, 77–87 (2016)

    Article  ADS  CAS  Google Scholar 

  35. Kendrick, M. A. High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem. Geol. 292–293, 116–126 (2012)

    Article  ADS  CAS  Google Scholar 

  36. Kendrick, M. A., Arculus, R. J., Burnard, P. & Honda, M. Quantifying brine assimilation by submarine magmas: examples from the Galapagos Spreading Centre and Lau Basin. Geochim. Cosmochim. Acta 123, 150–165 (2013)

    Article  ADS  CAS  Google Scholar 

  37. Hammerli, J., Rusk, B., Spandler, C., Emsbo, P. & Oliver, N. H. S. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources. Chem. Geol. 337–338, 75–87 (2013)

    Article  ADS  CAS  Google Scholar 

  38. Böhlke, J. & Irwin, J. J. Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico. Earth Planet. Sci. Lett. 110, 51–66 (1992)

    Article  ADS  Google Scholar 

  39. Dreibus, G. & Wänke, H. Volatiles on Earth and Mars: a comparison. Icarus 71, 225–240 (1987)

    Article  ADS  CAS  Google Scholar 

  40. Dreibus, G., Huisl, W., Spettel, B. & Haubold, R. Halogens in nahklites: studies of pre-terrestrial and terrestrial weathering processes. Lunar Planet. Sci. Conf. XXXVII, abstr. 1180 (2006)

    ADS  Google Scholar 

  41. Cartwright, J. A., Gilmour, J. D. & Burgess, R. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis. Geochim. Cosmochim. Acta 105, 255–293 (2013)

    Article  ADS  CAS  Google Scholar 

  42. Dreibus, G., Spettel, B. & Wänke, H. Lithium and halogens in lunar samples. Phil. Trans. R. Soc. A 285, 49–54 (1977)

    Article  ADS  CAS  Google Scholar 

  43. Reed, G. W. J. & Jovanovic, S. The halogens in Luna 16 and Luna 20 soils. Geochem. Cosmochim. Acta 37, 1007–1009 (1973)

    Article  ADS  CAS  Google Scholar 

  44. Reed, G. W. J., Jovanovic, S. & Fuchs, L. H. Trace elements and accessory minerals in lunar sample. Science 167, 501–503 (1970)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Wänke, H. et al. Multielement analysis of Apollo 15, 16 and 17 samples and the bulk composition of the Moon. Geochim. Cosmochim. Acta (Proc. 4th Lunar Sci. Conf. Suppl. 4) 2, 1461–1481 (1973)

    Google Scholar 

  46. Jovanovic, S., Jemsen, K. & Reed, G. W. J. The halogens, U, Li, Te, and P2O5 in five Apollo 17 soil samples. Eos 54, 595–596 (1973)

    Google Scholar 

  47. Kendrick, M. A., Woodhead, J. D. & Kamenetsky, V. S. Tracking halogens through the subduction cycle. Geology 40, 1075–1078 (2012)

    Article  ADS  CAS  Google Scholar 

  48. Kendrick, M. A. et al. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific backarc basins. Earth Planet. Sci. Lett. 400, 165–176 (2014)

    Article  ADS  CAS  Google Scholar 

  49. Kendrick, M. A., Kamenetsky, V. S., Phillips, D. & Honda, M. Halogen systematics (Cl, Br, I) in mid-ocean ridge basalts: a Macquarie Island case study. Geochim. Cosmochim. Acta 81, 82–93 (2012)

    Article  ADS  CAS  Google Scholar 

  50. Schilling, J.-G., Bergeron, M. B., Evans, R. & Smith, J. V. Halogens in the mantle beneath the North Atlantic. Phil. Trans. R. Soc. A 297, 147–178 (1980)

    Article  ADS  CAS  Google Scholar 

  51. Déruelle, B., Dreibus, G. & Jambon, A. Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet. Sci. Lett. 108, 217–227 (1992)

    Article  ADS  Google Scholar 

  52. John, T., Scambelluri, M., Frische, M., Barnes, J. D. & Bach, W. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet. Sci. Lett. 308, 65–76 (2011)

    Article  ADS  CAS  Google Scholar 

  53. Kendrick, M. A. et al. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 365, 86–96 (2013)

    Article  ADS  CAS  Google Scholar 

  54. Li, Y. H. A brief discussion on the mean oceanic residence time of elements. Geochim. Cosmochim. Acta 46, 2671–2675 (1982)

    Article  ADS  CAS  Google Scholar 

  55. Goles, G. G. & Greenland, P. L. Estimates of primordial halogen abundance ratios from studies of chondritic meteorites. Astron. J. 71, 162 (1966)

    Article  Google Scholar 

  56. Goles, G. G., Greenland, P. L. & Jerome, D. Y. Abundances of chlorine, bromine and iodine in meteorites. Geochim. Cosmochim. Acta 31, 1771–1787 (1967)

    Article  ADS  CAS  Google Scholar 

  57. Goles, G. G. & Anders, E. Abundances of iodine tellurium and uranium in meteorites. Geochim. Cosmochim. Acta 26, 723–737 (1962)

    Article  ADS  Google Scholar 

  58. Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta 74, 5349–5367 (2010)

    Article  ADS  CAS  Google Scholar 

  59. Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P. & Hohenberg, C. M. Verification and interpretation of the I-Xe chronometer. Geochim. Cosmochim. Acta 63, 739–760 (1999)

    Article  ADS  CAS  Google Scholar 

  60. Endress, M., Spettel, B. & Bischoff, A. Chemistry, petrography and mineralogy of the Tonk CI chondrite: preliminary results. Meteoritics 29, 462–463 (1994)

    Article  ADS  Google Scholar 

  61. Anders, E. & Ebihara, M. Solar-system abundances of the elements. Geochim. Cosmochim. Acta 46, 2363–2380 (1982)

    Article  ADS  CAS  Google Scholar 

  62. Greenland, P. L. Fractionation of chlorine, germanium, and zinc in chondritic meteorites. J. Geophys. Res. 68, 6507–6514 (1963)

    Article  ADS  CAS  Google Scholar 

  63. Kallemeyn, G. W. & Wasson, J. T. The compositional classification of chondrites—I. The carbonaceous chondrite groups. Geochim. Cosmochim. Acta 45, 1217–1230 (1981)

    Article  ADS  CAS  Google Scholar 

  64. Lodders, K. & Fegley, B. J. The Planetary Scientist’s Companion. 371 (1998)

  65. Palme, H. & Beer, H. The composition of chondritic meteorites. In Instruments, Methods, Solar System. Landolt–Börnstein—Group VI Astronomy and Astrophysics (Numerical Data and Functional Relationships in Science and Technology) (ed. Voigt, H. H. ) Vol. 3a, 198–203 (Springer, 1993)

    Google Scholar 

  66. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  ADS  CAS  Google Scholar 

  67. Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Phil. Trans. R. Soc. A 325, 535–544 (1988)

    Article  ADS  CAS  Google Scholar 

  68. Palme, H., Suess, H. E. & Zeh, H. D. Abundances of the elements in the solar system. In Methods, Constants, Solar System. Landolt–Börnstein—Group VI Astronomy and Astrophysics (Numerical Data and Functional Relationships in Science and Technology) (eds Schaifers, K. & Voigt, H. H. ) Vol 2a, 257–265 (Springer, 1993)

    Google Scholar 

  69. Greenland, P. L. & Lovering, J. F. Minor and trace element abundances in chondritic meteorites. Geochim. Cosmochim. Acta 29, 821–858 (1965)

    Article  ADS  CAS  Google Scholar 

  70. Rubin, A. E. & Choi, B.-G. Origin of halogens and nitrogen in enstatite chondrites. Earth Moon Planets 105, 41–53 (2009)

    Article  ADS  CAS  Google Scholar 

  71. Weisberg, M. K., McCoy, T. J. & Krot, A. N. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. ) 19–52 (Univ. Arizona Press, 2006)

  72. King, A. J., Schofield, P. F., Howard, K. T. & Russell, S. S. Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim. Cosmochim. Acta 165, 148–160 (2015)

    Article  ADS  CAS  Google Scholar 

  73. Bland, P. A., Cressey, G. & Menzies, O. N. Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteorit. Planet. Sci. 39, 3–16 (2004)

    Article  ADS  CAS  Google Scholar 

  74. Howard, K. T., Benedix, G. K., Bland, P. A. & Schrader, D. L. Modal mineralogy of CR chondrites by PSD-XRD: abundance of amorphous Fe-silicate. Meteoritical Soc. Meet. 74, abstr. 5256 (2011)

    Google Scholar 

  75. Menzies, O. N., Bland, P. A., Berry, F. J. & Cressey, G. A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: quantification of modal mineralogy and implications for redox conditions during metamorphism. Meteorit. Planet. Sci. 40, 1023–1042 (2005)

    Article  ADS  CAS  Google Scholar 

  76. Izawa, M. R. M., King, P. L., Flemming, R. L., Peterson, R. C. & McCausland, P. J. A. Mineralogical and spectroscopic investigation of enstatite chondrites by X-ray diffraction and infrared reflectance spectroscopy. J. Geophys. Res. 115, E07008 (2010)

    Article  ADS  CAS  Google Scholar 

  77. Bischoff, A., Vogel, N. & Roszjar, J. The Rumuruti chondrite group. Chem. Erde 71, 101–133 (2011)

    Article  CAS  Google Scholar 

  78. Vetter, W. et al. Sponge halogenated natural products found at parts-per-million levels in marine mammals. Environ. Toxicol. Chem. 21, 2014–2019 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. Gribble, G. W. The diversity of naturally produced organohalogens. Chemosphere 52, 289–297 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Vogt, R., Crutzen, P. J. & Sander, R. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 383, 327–330 (1996)

    Article  ADS  CAS  Google Scholar 

  81. Heumann, K. G., Neubauer, J. & Reifenhäuser, W. Iodine overabundances measured in the surface layers of an Antarctic stony and iron meteorite. Geochim. Cosmochim. Acta 54, 2503–2506 (1990)

    Article  ADS  CAS  Google Scholar 

  82. Kendrick, M. A., Scambelluri, M., Honda, M. & Phillips, D. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 4, 807–812 (2011)

    Article  ADS  CAS  Google Scholar 

  83. Kadlag, Y. & Becker, H. Highly siderophile and chalcogen element constraints on the origin of components of the Allende and Murchison meteorites. Meteorit. Planet. Sci. 51, 1136–1152 (2016)

    Article  ADS  CAS  Google Scholar 

  84. Jones, R. et al. Phosphate minerals in LL chondrites: a record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochim. Cosmochim. Acta 132, 120–140 (2014)

    Article  ADS  CAS  Google Scholar 

  85. Goswami, J. N. et al. In situ determination of iodine content and iodine-xenon systematics in silicates and troilite phases in chondrules from the LL3 chondrite Semarkona. Meteorit. Planet. Sci. 33, 527–534 (1998)

    Article  ADS  CAS  Google Scholar 

  86. Clay, P. L., O’Driscoll, B., Upton, B. G. J. & Busemann, H. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites. Am. Mineral. 99, 1683–1693 (2014)

    Article  ADS  Google Scholar 

  87. King, A. J. et al. Noble gas chronology of the EH3 chondrite ALHA 77295 by closed system stepped etching. Lunar Planet. Sci. Conf. XLIV, abstr. 2217 (2013)

    ADS  Google Scholar 

  88. Whitby, J. A., Gilmour, J. D., Turner, G., Prinz, M. & Ash, R. D. Iodine–xenon dating of chondrules from the Qingzhen and Kota Kota enstatite chondrites. Geochim. Cosmochim. Acta 66, 347–359 (2002)

    Article  ADS  CAS  Google Scholar 

  89. Ebel, D. S. & Sack, R. O. Djerfisherite: nebular source of refractory potassium. Contrib. Mineral. Petrol. 166, 923–934 (2013)

    Article  ADS  CAS  Google Scholar 

  90. El Goresy, A., Yabuki, H., Ehlers, K., Wollum, D. & Pernicka, E. Qingzhen and Yamato-691: a tentative alphabet for the EH chondrites. Proc. Natl. Inst. Polar Res. 1, 65–101 (1988)

    Google Scholar 

  91. Ringwood, A. A model for the upper mantle. J. Geophys. Res. 67, 858–867 (1962)

    Google Scholar 

  92. Jagoutz, E. et al. The abundance of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf. 1, 2031–2050 (1979)

    ADS  Google Scholar 

  93. Palme, H. & O’Neill, H. S. C. in Treatise on Geochemistry 1–39 (Elsevier, 2014)

  94. Allègre, C. J., Manhès, G. & Lewin, É. Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 185, 49–69 (2001)

    Article  ADS  Google Scholar 

  95. Burgess, R., Cartigny, P., Harrison, D., Hobson, E. & Harris, J. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle. Geochim. Cosmochim. Acta 73, 1779–1794 (2009)

    Article  ADS  CAS  Google Scholar 

  96. Sun, S.-S. Chemical composition and origin of the Earth’s primitive mantle. Geochim. Cosmochim. Acta 46, 179–192 (1982)

    Article  ADS  CAS  Google Scholar 

  97. Anderson, D. L. Chemical composition of the mantle. Proc. Lunar Planet. Sci. Conf. 88, B41–B52 (1983)

    ADS  Google Scholar 

  98. Morgan, J. W. & Anders, E. Chemical composition of Earth, Venus, and Mercury. Proc. Natl Acad. Sci. USA 77, 6973–6977 (1980)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kargel, J. S. & Lewis, J. S. The composition and early evolution of Earth. Icarus 105, 1–25 (1993)

    Article  ADS  CAS  Google Scholar 

  100. Ringwood, A. Phase transformations and their bearing on the constitution of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991)

    Article  ADS  CAS  Google Scholar 

  101. Jambon, A., Weber, H. & Begemann, F. Helium and argon from an Atlantic MORB glass: concentration, distribution and isotopic composition. Earth Planet. Sci. Lett. 73, 255–268 (1985)

    Article  ADS  CAS  Google Scholar 

  102. Wänke, H., Dreibus, G. & Jagoutz, E. in Archean Geochemistry (ed. Kroner, A. ) 1–24 (Springer, 1984)

  103. Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Methods and results. J. Geophys. Res. Solid Earth 112, 1–21 (2007)

    Google Scholar 

  104. Schilling, J.-G., Unni, C. K. & Bender, M. L. Origin of chlorine and bromine in the oceans. Nature 273, 631–636 (1978)

    Article  ADS  CAS  Google Scholar 

  105. Muramatsu, Y. & Wedepohl, K. H. The distribution of iodine in the Earth’s crust. Chem. Geol. 147, 201–216 (1998)

    Article  ADS  CAS  Google Scholar 

  106. Palme, H. & Nickel, K. G. Ca/Al ratio and composition of the Earth’s upper mantle. Geochim. Cosmochim. Acta 49, 2123–2132 (1985)

    Article  ADS  CAS  Google Scholar 

  107. Hart, S. R. & Zindler, A. In search of a bulk-Earth composition. Chem. Geol. 57, 247–267 (1986)

    Article  ADS  CAS  Google Scholar 

  108. Dreibus, G., Wänke, H. & Schultz, L. Mysterious iodine-overabundance in Antarctic meteorites. In International Workshop on Antarctic Meteorites (eds Annexstad, J. et al.) 34–36 (LPI Technical Report 86-1, Lunar and Planetary Science Institute, 1986)

Download references

Acknowledgements

We acknowledge the following organisations and individuals for the provision of samples: NASA Antarctic Meteorite Working Group (MIL 07139, MIL 07028 and ALH 77295); P. Heck, Chicago Field Museum (Indarch); Izikio Museum of South Africa (St Marks); M. Boyet (SAH 97096); M. Schönbächler (GRA 06100, EET 92159, Murray, Orgueil); and A. Ruzicka (NWA 753 and NWA 755). We thank J. Cowpe for assistance with noble gas measurements, K. J. Theis for laboratory assistance and W. Akram for help with sample preparation. H.B. acknowledges support from the PlanetS National Center of Competence in Research (NCCR) of the Swiss National Science Foundation. This project was funded by the European Research Council FP7 ‘NOBLE’ grant number 267692.

Author information

Authors and Affiliations

Authors

Contributions

P.L.C., R.B. and C.J.B. designed the study. P.L.C. and H.B. acquired the samples (with material also provided by J.M.D.D.). P.L.C. analysed the samples and wrote the first draft of the manuscript. All authors contributed to the discussion of the results, interpretation of the data, and editing of the manuscript.

Corresponding author

Correspondence to Patricia L. Clay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks H. Becker and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Compilation of halogen data for CI chondrites.

Histograms of chlorine (a), bromine (b) and iodine (c), showing the distribution of halogens in CI chondrites (masses as shown), as reported in Supplementary Table 1. Data for Orgueil from this study are shown in each panel by the black line, with uncertainty shown in grey (for iodine, this is within the thickness of the line). NAA, neutron activation analysis, INAA, instrumental neutron activation analysis, CHEM, chemical methods, GSIRMS, gas source isotope ratio mass spectrometry.

Extended Data Figure 2 A comparison of meteorite find environments can be used as a diagnostic tool to assess terrestrial contamination.

Chlorine concentrations in hot desert, cold desert and non-desert meteorites analysed in this study.

Extended Data Figure 3 Comparison of chlorine in meteorite finds and falls can be used to assess terrestrial contamination.

Chlorine is expected to be higher in finds than in falls, where contamination has occurred, owing to high relative Cl in the terrestrial environment. However, not much difference is observed between falls and finds, illustrating that the samples are not strongly contaminated, and some of the highest concentrations are present in the falls. We consider this to reflect variations in the amounts of halogen carrier phases present, rather than resulting from terrestrial input.

Extended Data Figure 4 Br/Cl and I/Cl ratios in some known terrestrial contaminants as indicators of terrestrial contamination.

Sample halogen ratios are shown in the context of some known terrestrial contaminants, marine aerosol, ice and atmospheric particles from McMurdo and the South Pole. The dashed lines encompass the region of contamination. Samples are generally below these values, apart from SAH 97096 (EH3), which is affected by a contaminant with a high Br concentration. The composition of the contaminants is given in ref. 108.

Extended Data Figure 5 Backscattered electron image of SAH 97096, showing that some halogen-carrier phases are susceptible to thermal metamorphism.

Shown is the sulfide breakdown reaction90 due to thermal metamorphism in enstatite chondrite SAH 97096 (EH3). Djerfisherite [(K, Na)6(Cu, Ni, Fe)25S26Cl] breaks down into porous troilite, with loss of Na, K, Cl and so on. Original djerfisherite is shown in the red boxes, while the reaction product is the large mass in the centre of the image. If djerfisherite is a host to bromine and iodine as well as chlorine, halogen loss may be synchronous with alteration, which could be an explanation for the consistent loss of all halogens in enstatite chondrites with increasing petrologic type.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-6. (XLSX 56 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clay, P., Burgess, R., Busemann, H. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614–618 (2017). https://doi.org/10.1038/nature24625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24625

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing