Progress in and promise of bacterial quorum sensing research

  • A Corrigendum to this article was published on 01 March 2018

Abstract

This Review highlights how we can build upon the relatively new and rapidly developing field of research into bacterial quorum sensing (QS). We now have a depth of knowledge about how bacteria use QS signals to communicate with each other and to coordinate their activities. In recent years there have been extraordinary advances in our understanding of the genetics, genomics, biochemistry, and signal diversity of QS. We are beginning to understand the connections between QS and bacterial sociality. This foundation places us at the beginning of a new era in which researchers will be able to work towards new medicines to treat devastating infectious diseases, and use bacteria to understand the biology of sociality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Canonical QS and the chemical diversity of signals.
Figure 2: Social cheating in QS populations.
Figure 3: Factors that affect QS in natural environments.

Change history

  • 28 February 2018

    Please see accompanying Corrigendum (http://doi.org/10.1038/nature25977). In Fig. 1b, the carboxyl group of compound number 6 has been added, and the chemical name in the Fig. 1b legend has changed from ‘methyl dodecenoic acid’ to ‘11-methyl-cis-dodecenoic acid’. See Supplementary Information to the Corrigendum for the original Fig. 1.

References

  1. 1

    Wilson, E. Sociobiology: The New Synthesis (Harvard Univ. Press, 1975)

  2. 2

    Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994). Introduction of the bacterial quorum sensing concept, which has come into common usage to cover mechanisms involved in population density sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Tomasz, A. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208, 155–159 (1965). This paper was the first to provide evidence that an extracellular hormone-like molecule promoted bacterial group behaviour.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. 6

    Nealson, K. H ., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–322 (1970). This paper showed that the sudden increase of bioluminescence by mid-logarithmic Vibrio fischeri and Vibrio harveyi cultures required transcription and a self-produced factor, and this phenomenon was referred to as autoinduction.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Greenberg, E., Hastings, J. & Ulitzer, S. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch. Microbiol. 120, 87–91 (1979)

    Article  CAS  Google Scholar 

  8. 8

    Engebrecht, J., Nealson, K. & Silverman, M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773–781 (1983)

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Engebrecht, J. & Silverman, M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl Acad. Sci. USA 81, 4154–4158 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. 10

    Eberhard, A . et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449 (1981). This article reports the first acyl-homoserine lactone chemical structure

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Håvarstein, L. S ., Coomaraswamy, G. & Morrison, D. A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 92, 11140–11144 (1995)

    Article  ADS  PubMed  Google Scholar 

  12. 12

    Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA 92, 12055–12059 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. 13

    Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002). This article describes the chemical structure of AI-2.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. 14

    Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463–476 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Hornby, J. M. et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982–2992 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Kügler, S., Schurtz Sebghati, T., Groppe Eissenberg, L. & Goldman, W. E. Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proc. Natl Acad. Sci. USA 97, 8794–8798 (2000)

    Article  ADS  PubMed  Google Scholar 

  17. 17

    Erez, Z. et al. Communication between viruses guides lysis-lysogeny decisions. Nature 541, 488–493 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Groenhagen, U. et al. Production of bioactive volatiles by different Burkholderia ambifaria strains. J. Chem. Ecol. 39, 892–906 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Pearson, J. P., Feldman, M., Iglewski, B. H. & Prince, A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68, 4331–4334 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Pirhonen, M., Flego, D., Heikinheimo, R. & Palva, E. T. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12, 2467–2476 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. 22

    West, S. A., Winzer, K., Gardner, A. & Diggle, S. P. Quorum sensing and the confusion about diffusion. Trends Microbiol. 20, 586–594 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA 109, 8259–8263 (2012)

    Article  ADS  PubMed  Google Scholar 

  25. 25

    Diggle, S. P ., Griffin, A. S ., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007). This article and reference 28 showed that while QS can provide a benefit at the group level, cheaters can avoid the cost of QS and can therefore spread in a population.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. 26

    Pollitt, E. J., West, S. A., Crusz, S. A., Burton-Chellew, M. N. & Diggle, S. P. Cooperation, quorum sensing, and evolution of virulence in Staphylococcus aureus. Infect. Immun. 82, 1045–1051 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Popat, R . et al. Quorum-sensing and cheating in bacterial biofilms. Proc. R. Soc. Lond. B 279, 4765–4771 (2012)

    Article  CAS  Google Scholar 

  28. 28

    Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007)

    Article  ADS  PubMed  Google Scholar 

  29. 29

    Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Phil. Trans. R. Soc. Lond. B 364, 3157–3168 (2009)

    Article  Google Scholar 

  31. 31

    Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964)

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964)

    Article  CAS  Google Scholar 

  33. 33

    Rumbaugh, K. P . et al. Kin selection, quorum sensing and virulence in pathogenic bacteria. Proc. R. Soc. Lond. B 279, 3584–3588 (2012)

    Article  Google Scholar 

  34. 34

    Abbot, P. et al. Inclusive fitness theory and eusociality. Nature 471, E1–E4; Reply E9–E10 (2011)

    Article  CAS  Google Scholar 

  35. 35

    Allen, B., Nowak, M. A. & Wilson, E. O. Limitations of inclusive fitness. Proc. Natl Acad. Sci. USA 110, 20135–20139 (2013)

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  36. 36

    Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 466, 1057–1062 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Dandekar, A. A., Chugani, S. & Greenberg, E. P. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–266 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. 41

    Majerczyk, C., Schneider, E. & Greenberg, E. P. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife 5, e14712 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl Acad. Sci. USA 112, 2187–2191 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. 43

    Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Phil. Trans. R. Soc. Lond. B 362, 1241–1249 (2007)

    Article  CAS  Google Scholar 

  44. 44

    Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Maynard Smith, J. & Harper, D. Animal Signals (Oxford Univ. Press, 2003)

  46. 46

    Surette, M. G., Miller, M. B. & Bassler, B. L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA 96, 1639–1644 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. 47

    Winans, S. C. Bacterial esperanto. Nat. Struct. Biol. 9, 83–84 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Taga, M. E., Miller, S. T. & Bassler, B. L. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol. Microbiol. 50, 1411–1427 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Taga, M. E., Semmelhack, J. L. & Bassler, B. L. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol. 42, 777–793 (2001)

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Rezzonico, F. & Duffy, B. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol. 8, 154 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Winzer, K., Hardie, K. R. & Williams, P. Bacterial cell-to-cell communication: sorry, can’t talk now — gone to lunch! Curr. Opin. Microbiol. 5, 216–222 (2002)

    Article  CAS  Google Scholar 

  52. 52

    McFall-Ngai, M. Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol. 12, e1001783 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Ahmer, B. M., van Reeuwijk, J., Timmers, C. D., Valentine, P. J. & Heffron, F. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bacteriol. 180, 1185–1193 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Subramoni, S. & Venturi, V. LuxR-family ‘solos’: bachelor sensors/regulators of signalling molecules. Microbiology 155, 1377–1385 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Michael, B., Smith, J. N., Swift, S., Heffron, F. & Ahmer, B. M. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183, 5733–5742 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Smith, J. N. & Ahmer, B. M. Detection of other microbial species by Salmonella: expression of the SdiA regulon. J. Bacteriol. 185, 1357–1366 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Hughes, D. T. et al. Chemical sensing in mammalian host-bacterial commensal associations. Proc. Natl Acad. Sci. USA 107, 9831–9836 (2010)

    Article  ADS  PubMed  Google Scholar 

  59. 59

    Nguyen, Y. et al. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. MBio 6, e02429–14 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Van Houdt, R., Aertsen, A., Moons, P., Vanoirbeek, K. & Michiels, C. W. N-acyl-L-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol. Lett. 256, 83–89 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Chugani, S. A. et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 98, 2752–2757 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. 62

    Lee, J. H., Lequette, Y. & Greenberg, E. P. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59, 602–609 (2006)

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Chugani, S. & Greenberg, E. P. An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR. Front. Cell. Infect. Microbiol. 4, 152 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Brachmann, A. O. et al. Pyrones as bacterial signaling molecules. Nat. Chem. Biol. 9, 573–578 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Brameyer, S., Kresovic, D., Bode, H. B. & Heermann, R. Dialkylresorcinols as bacterial signaling molecules. Proc. Natl Acad. Sci. USA 112, 572–577 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  66. 66

    Subramoni, S. et al. Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl. Environ. Microbiol. 77, 4579–4588 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    González, J. F. & Venturi, V. A novel widespread interkingdom signaling circuit. Trends Plant Sci. 18, 167–174 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Schaefer, A. L. et al. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides. MBio 7, e01101–16 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. & Xavier, K. B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Reports 10, 1861–1871 (2015)

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Bäumler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Costerton, J. W. et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987)

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Crusz, S. A. et al. Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28, 835–842 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005)

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Shrout, J. D. et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62, 1264–1277 (2006)

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Roberts, A. E., Kragh, K. N., Bjarnsholt, T. & Diggle, S. P. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J. Mol. Biol. 427, 3646–3661 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Stacy, A. et al. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc. Natl Acad. Sci. USA 111, 7819–7824 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  78. 78

    Stacy, A., McNally, L., Darch, S. E., Brown, S. P. & Whiteley, M. The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14, 93–105 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Chandler, J. R. et al. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J. Bacteriol. 191, 5901–5909 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Laganenka, L., Colin, R. & Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 7, 12984 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Boedicker, J. Q., Vincent, M. E. & Ismagilov, R. F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chem. Int. Edn Engl. 48, 5908–5911 (2009)

    Article  CAS  Google Scholar 

  82. 82

    Carnes, E. C. et al. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat. Chem. Biol. 6, 41–45 (2010)

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Gao, M. et al. A crucial role for spatial distribution in bacterial quorum sensing. Sci. Rep. 6, 34695 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Connell, J. L ., Kim, J ., Shear, J. B ., Bard, A. J. & Whiteley, M. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc. Natl Acad. Sci. USA 111, 18255–18260 (2014). This paper provided the first assessment of the calling distance of AHL signals produced by P. aeruginosa aggregates.

    Article  ADS  CAS  PubMed  Google Scholar 

  85. 85

    Boyer, M. & Wisniewski-Dyé, F. Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol. Ecol. 70, 1–19 (2009)

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Decho, A. W., Frey, R. L. & Ferry, J. L. Chemical challenges to bacterial AHL signaling in the environment. Chem. Rev. 111, 86–99 (2011)

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Prosser, J. I. Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol. Ecol. 81, 507–519 (2012)

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Kragh, K. N. et al. Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Infect. Immun. 82, 4477–4486 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Dong, Y. H. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001). This paper provided evidence that engineering a plant host to enzymatically degrade QS signals can reduce disease caused by a bacterial pathogen.

    Article  ADS  CAS  PubMed  Google Scholar 

  90. 90

    Lin, Y. H. et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47, 849–860 (2003)

    Article  PubMed  Google Scholar 

  91. 91

    Elias, M. & Tawfik, D. S. Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J. Biol. Chem. 287, 11–20 (2012)

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Li, X. C., Wang, C., Mulchandani, A. & Ge, X. Engineering soluble human paraoxonase 2 for quorum quenching. ACS Chem. Biol. 11, 3122–3131 (2016)

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Ozer, E. A. et al. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol. Lett. 253, 29–37 (2005)

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Yang, F. et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579, 3713–3717 (2005)

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Stoltz, D. A. et al. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J. Clin. Invest. 118, 3123–3131 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (The Review on Microbial Resistance, 2016)

  97. 97

    Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014)

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Givskov, M . et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618–6622 (1996). This paper describes the discovery of a class of compounds produced by the Australian macroalga Delisea pulchra that inhibit QS-controlled processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hentzer, M. et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Christensen, Q. H., Grove, T. L., Booker, S. J. & Greenberg, E. P. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proc. Natl Acad. Sci. USA 110, 13815–13820 (2013)

    Article  ADS  PubMed  Google Scholar 

  101. 101

    Müh, U. et al. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob. Agents Chemother. 50, 3674–3679 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    O’Loughlin, C. T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA 110, 17981–17986 (2013)

    Article  ADS  PubMed  Google Scholar 

  103. 103

    Starkey, M. et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 10, e1004321 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Gerdt, J. P., McInnis, C. E., Schell, T. L., Rossi, F. M. & Blackwell, H. E. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by nonlactone ligands. Chem. Biol. 21, 1361–1369 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Borlee, B. R., Geske, G. D., Blackwell, H. E. & Handelsman, J. Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening. Appl. Environ. Microbiol. 76, 8255–8258 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Bjarnsholt, T. et al. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 5, e10115 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Hoffman, L. R. et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8, 66–70 (2009)

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Feltner, J. B. et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. MBio 7, e01513–16 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  110. 110

    Greenberg, E. P. Bacterial communication and group behavior. J. Clin. Invest. 112, 1288–1290 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Bouayed, N ., Dietrich, N ., Lafforgue, C ., Lee, C. H. & Guigui, C. Process-oriented review of bacterial quorum quenching for membrane biofouling mitigation in membrane bioreactors (MBRs). Membranes (Basel) 6, E52 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Verma, S. C. & Miyashiro, T. Niche-Specific impact of a symbiotic function on the persistence of microbial symbionts within a natural host. Appl. Environ. Microbiol. 82, 5990–5996 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Levin and S. Brown for advice and T. Miyashiro for sharing images of squid light organs. We acknowledge support for of our research programs from US Public Health Service (USPHS) Grants GM59026 and P30DK089507 (to E.P.G.), R01GM116547 and NIH R01DE023193 (to M.W.), the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 (to E.P.G.), and an Innovative Team Program Grant of Guangdong Province, China 2013S034 (to E.P.G.).

Author information

Affiliations

Authors

Contributions

M.W., S.P.D. and E.P.G. contributed equally to development, writing and revising this Review.

Corresponding author

Correspondence to E. Peter Greenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks N. Fierer, M. McFall-Ngai and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related audio

Reporter Benjamin Thompson finds out how communities of bacteria cooperate and clamp down on freeloaders

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whiteley, M., Diggle, S. & Greenberg, E. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017). https://doi.org/10.1038/nature24624

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.