Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abyssal ocean overturning shaped by seafloor distribution

Abstract

The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density surfaces, seafloor areas and the ocean’s overturning.
Figure 2: Depth and density distributions of seafloor area over 32° S–48° N.
Figure 3: Pacific seafloor and radiocarbon distributions.
Figure 4: Sketch of a volume V of waters denser than γ, bounded by the density surface A(γ) and latitudes ys and yn.
Figure 5: Density fluxes and dianeutral transports within 32° S–48° N.
Figure 6: Schematic abyssal overturning circulation north of 32° S.

Similar content being viewed by others

References

  1. Primeau, F. W. & Holzer, M. The ocean’s memory of the atmosphere: residence-time and ventilation-rate distributions of water masses. J. Phys. Oceanogr. 36, 1439–1456 (2006)

    ADS  Google Scholar 

  2. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric pCO2 . Nature 308, 621–624 (1984)

    ADS  CAS  Google Scholar 

  3. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Nat /Acad. Sci. 111, 8753–8758 (2014)

    ADS  CAS  Google Scholar 

  4. Nikurashin, M. & Vallis, G. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42, 1652–1667 (2012)

    ADS  Google Scholar 

  5. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013)

    Google Scholar 

  6. Toggweiler, J. R. & Samuels, B. in New Radiocarbon Constraints on the Upwelling of Abyssal Water to the Ocean’s Surface (ed. Heimann, M. ) 303–331 (NATO ASI Series, Springer, 1993)

  7. Toggweiler, J. R. & Samuels, B. On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr. 28, 1832–1852 (1998)

    ADS  Google Scholar 

  8. Mashayek, A., Ferrari, R., Nikurashin, M. & Peltier, W. R. Influence of enhanced abyssal diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr. 45, 2580–2597 (2015)

    ADS  Google Scholar 

  9. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000)

    ADS  CAS  PubMed  Google Scholar 

  10. Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007)

    ADS  Google Scholar 

  11. Marshall, D. Subduction of water masses in an eddying ocean. J. Mar. Res. 55, 201–222 (1997)

    Google Scholar 

  12. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012)

    ADS  CAS  Google Scholar 

  13. Jackett, D. R. & McDougall, T. J. A neutral density variable for the world’s oceans. J. Phys. Oceanogr. 27, 237–263 (1997)

    ADS  Google Scholar 

  14. Ledwell, J. R., Watson, A. J. & Law, C. S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364, 701–703 (1993)

    ADS  CAS  Google Scholar 

  15. Toole, J. M., Polzin, K. L. & Schmitt, R. W. Estimates of diapycnal mixing in the abyssal ocean. Science 264, 1120–1123 (1994)

    ADS  CAS  PubMed  Google Scholar 

  16. Polzin, K. L., Speer, K. G., Toole, J. M. & Schmitt, R. W. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic ocean. Nature 380, 54–57 (1996)

    ADS  CAS  Google Scholar 

  17. Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 93–96 (1997)

    CAS  PubMed  Google Scholar 

  18. Munk, W. & Wunsch, C. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. 45, 1977–2000 (1998)

    Google Scholar 

  19. Ledwell, J. R. et al. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179–182 (2000)

    ADS  CAS  PubMed  Google Scholar 

  20. Adcroft, A., Scott, J. R. & Marotzke, J. Impact of geothermal heating on the global ocean circulation. Geophys. Res. Lett. 28, 1735–1738 (2001)

    ADS  Google Scholar 

  21. de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. J. G. & Naveira Garabato, A. C. On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 46, 635–661 (2016)

    ADS  Google Scholar 

  22. Walin, G. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus A 34, 187–195 (1982)

    ADS  Google Scholar 

  23. Emile-Geay, J. & Madec, G. Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci. 5, 203–217 (2009)

    ADS  Google Scholar 

  24. St Laurent, L. C., Simmons, H. L. & Jayne, S. R. Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 29, 2106 (2002)

    ADS  Google Scholar 

  25. Roemmich, D., Hautala, S. & Rudnick, D. Northward abyssal transport through the Samoan passage and adjacent regions. J. Geophys. Res. 101, 14039–14055 (1996)

    ADS  Google Scholar 

  26. Whitworth, T. III et al. On the deep western-boundary current in the southwest Pacific basin. Prog. Oceanogr. 43, 1–54 (1999)

    ADS  Google Scholar 

  27. Hogg, N. G., Siedler, G. & Zenk, W. Circulation and variability at the southern boundary of the Brazil Basin. J. Phys. Oceanogr. 29, 145–157 (1999)

    ADS  Google Scholar 

  28. Schott, F. A. et al. The shallow and deep western boundary circulation of the South Atlantic at 5°–11° S. J. Phys. Oceanogr. 35, 2031–2053 (2005)

    ADS  Google Scholar 

  29. MacKinnon, J. A., Johnston, T. M. S. & Pinkel, R. Strong transport and mixing of deep water through the Southwest Indian Ridge. Nat. Geosci. 1, 755–758 (2008)

    ADS  CAS  Google Scholar 

  30. Gregg, M. C. Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94, 9686–9698 (1989)

    ADS  Google Scholar 

  31. Polzin, K. L., Toole, J. M. & Schmitt, R. W. Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 25, 306–328 (1995)

    ADS  Google Scholar 

  32. Waterhouse, A. F. et al. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44, 1854–1872 (2014)

    ADS  Google Scholar 

  33. Kunze, E. Internal-wave-driven mixing: global geography and budgets. J. Phys. Oceanogr. 47, 1325–1345 (2017)

    ADS  Google Scholar 

  34. Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M. & Campin, J.-M. Turning ocean mixing upside down. J. Phys. Oceanogr. 46, 2239–2261 (2016)

    ADS  Google Scholar 

  35. McDougall, T. J. & Ferrari, R. Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr. 47, 261–283 (2017)

    ADS  Google Scholar 

  36. Bryden, H. L. & Nurser, A. J. G. Effects of strait mixing on ocean stratification. J. Phys. Oceanogr. 33, 1870–1872 (2003)

    ADS  Google Scholar 

  37. Thurnherr, A. M., St. Laurent, L. C., Speer, K. G., Toole, J. M. & Ledwell, J. R. Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr. 35, 1370–1381 (2005)

    ADS  Google Scholar 

  38. St Laurent, L. C. & Thurnherr, A. M. Intense mixing of lower thermocline water on the crest of the Mid-Atlantic Ridge. Nature 448, 680–683 (2007)

    ADS  CAS  PubMed  Google Scholar 

  39. Key, R. M. et al. Global Ocean Data Analysis Project Version 2 (GLODAPv2). Report ORNL/CDIAC-162, NDP-093, https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2016)

  40. Olsen, A. et al. The Global Ocean Data Analysis Project Version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016)

    ADS  Google Scholar 

  41. Gouretski, V. V. & Koltermann, K. P. WOCE Global Hydrographic Climatology: A Technical Report (Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35, 2004)

  42. Sarmiento, J. L. et al. Deep ocean biogeochemistry of silicic acid and nitrate. Glob. Biogeochem. Cycles 21, GB1S90 (2007)

    Google Scholar 

  43. Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007)

    ADS  Google Scholar 

  44. Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013)

    Google Scholar 

  45. Holzer, M., Primeau, F. W., DeVries, T. & Matear, R. The Southern Ocean silicon trap: data-constrained estimates of regenerated silicic acid, trapping efficiencies, and global transport paths. J. Geophys. Res. 119, 313–331 (2014)

    ADS  CAS  Google Scholar 

  46. Talley, L. D. & Joyce, T. M. The double silica maximum in the North Pacific. J. Geophys. Res. 97, 5465–5480 (1992)

    ADS  CAS  Google Scholar 

  47. Okazaki, Y. et al. Deepwater formation in the North Pacific during the last glacial termination. Science 329, 200–204 (2010)

    ADS  CAS  PubMed  Google Scholar 

  48. Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29, 645–667 (2014)

    ADS  Google Scholar 

  49. Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997)

    CAS  Google Scholar 

  50. Garrett, C. & St. Laurent, L. C. Aspects of deep ocean mixing. J. Oceanogr. 58, 11–24 (2002)

    Google Scholar 

  51. Molemaker, M. J., McWilliams, J. C. & Dewar, W. K. Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr. 45, 613–629 (2015)

    ADS  Google Scholar 

  52. Gula, J., Molemaker, M. J. & McWilliams, J. C. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 7, 12811 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jayne, S. R. & St. Laurent, L. C. Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett. 28, 811–814 (2001)

    ADS  Google Scholar 

  54. Nikurashin, M. & Ferrari, R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr. 40, 1055–1074 (2010)

    ADS  Google Scholar 

  55. Muller, C. J. & Bülher, O. Saturation of the internal tides and induced mixing in the abyssal ocean. J. Phys. Oceanogr. 39, 2077–2096 (2009)

    ADS  Google Scholar 

  56. Nikurashin, M. & Legg, S. A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr. 41, 378–395 (2011)

    ADS  Google Scholar 

  57. Bühler, O. & Holmes-Cerfon, M. Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271–293 (2011)

    ADS  MATH  Google Scholar 

  58. Goff, J. A. Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res. 115, B12104 (2010)

    ADS  Google Scholar 

  59. Nycander, J. Generation of internal waves in the deep ocean by tides. J. Geophys. Res. 110, C10028 (2005)

    ADS  Google Scholar 

  60. Melet, A. et al. Internal tide generation by abyssal hills using analytical theory. J. Geophys. Res. 118, 303–306, 318 (2013)

    Google Scholar 

  61. Nikurashin, M., Ferrari, R., Grisouard, N. & Polzin, K. The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr. 44, 2938–2950 (2014)

    ADS  Google Scholar 

  62. Stuiver, M. & Polach, H. A. Reporting of 14C data. Radiocarbon 19, 355–363 (1977)

    Google Scholar 

  63. Stuiver, M., Quay, P. D. & Ostlund, H. G. Abyssal water carbon-14 distribution and the age of the world oceans. Science 219, 849–851 (1983)

    ADS  CAS  PubMed  Google Scholar 

  64. Roussenov, V., Williams, R. G., Follows, M. J. & Key, R. M. Role of bottom water transport and diapycnic mixing in determining the radiocarbon distribution in the Pacific. J. Geophys. Res. 109, C06015 (2004)

    ADS  Google Scholar 

  65. Holzer, M. & Primeau, F. W. The path-density distribution of oceanic surface-to-surface transport. J. Geophys. Res. 113, C01018 (2008)

    ADS  Google Scholar 

  66. Burke, A. et al. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanography 30, 1021–1039 (2015)

    ADS  Google Scholar 

  67. Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares — application to waters around Australasia. J. Atmos. Oceanic Technol. 19, 1357–1375 (2002)

    ADS  Google Scholar 

  68. Dunn, J. R. & Ridgway, K. R. Mapping ocean properties in regions of complex topography. Deep-Sea Res. 49, 591–604 (2002)

    CAS  Google Scholar 

  69. Stuiver, M., Robinson, S. W., Ostlund, H. G. & Dorsey, H. G. Carbon-14 calibration between the University of Washington and the University of Miami Geosecs laboratories. Earth Planet. Sci. Lett. 23, 65–68 (1974)

    ADS  CAS  Google Scholar 

  70. Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004)

    ADS  Google Scholar 

  71. Warren, B. A. Transpacific hydrographic sections at latitudes 43°S and 28°S: the SCORPIO expedition — II. Deep water. Deep-Sea Res. 20, 9–38 (1973)

    Google Scholar 

  72. Wijffels, S. E., Toole, J. M. & Davis, R. Revisiting the South Pacific subtropical circulation: a synthesis of World Ocean Circulation Experiment observations along 32°S. J. Geophys. Res. 106, 19481–19513 (2001)

    ADS  Google Scholar 

  73. Roemmich, D. & McCallister, T. Large scale circulation of the North Pacific ocean. Prog. Oceanogr. 22, 171–204 (1989)

    ADS  Google Scholar 

  74. Bryden, H. L., Roemmich, D. H. & Church, J. A. Ocean heat transport across 24°N in the Pacific. Deep-Sea Res. 38, 297–324 (1991)

    ADS  Google Scholar 

  75. Wijffels, S. E. et al. The water masses and circulation at 10°N in the Pacific. Deep-Sea Res. 43, 501–544 (1996)

    Google Scholar 

  76. Wunsch, C., Hu, D. & Grant, R. Mass, heat, salt and nutrient fluxes in the South Pacific Ocean. J. Phys. Oceanogr. 13, 725–753 (1983)

    ADS  Google Scholar 

  77. Sloyan, B. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001)

    ADS  Google Scholar 

  78. Macdonald, A. M. et al. The WOCE-era 3-D Pacific ocean circulation and heat budget. Prog. Oceanogr. 82, 281–325 (2009)

    ADS  Google Scholar 

  79. Katsumata, K., Sloyan, B. & Masuda, S. Diapycnal and isopycnal transports in the Southern Ocean estimated by a box inverse model. J. Phys. Oceanogr. 43, 2270–2287 (2013)

    ADS  Google Scholar 

  80. Naveira Garabato, A. C., Williams, A. P. & Bacon, S. The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog. Oceanogr. 120, 41–78 (2014)

    ADS  Google Scholar 

  81. Hernández-Guerra, A. & Talley, L. D. Meridional overturning transports at 30°S in the Indian and Pacific oceans in 2002-2003 and 2009. Prog. Oceanogr. 146, 89–120 (2016)

    ADS  Google Scholar 

  82. Faure, V. & Speer, K. Deep circulation in the eastern South Pacific ocean. J. Mar. Res. 70, 748–778 (2012)

    Google Scholar 

  83. Mantyla, A. W. & Reid, J. L. Abyssal characteristics of the World Ocean waters. Deep-Sea Res. 30, 805–833 (1983)

    ADS  CAS  Google Scholar 

  84. Huussen, T. N., Naveira Garabato, A. C., Bryden, H. L. & McDonagh, E. L. Is the deep Indian ocean MOC sustained by breaking internal waves? J. Geophys. Res. 117, C08024 (2012)

    ADS  Google Scholar 

  85. Hogg, N. G. A least-squares fit of the advective-diffusive equations to Levitus atlas data. J. Mar. Res. 45, 347–375 (1987)

    CAS  Google Scholar 

  86. Robbins, P. E. & Toole, J. M. The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep-Sea Res. 44, 879–906 (1997)

    CAS  Google Scholar 

  87. Ganachaud, A., Wunsch, C., Marotzke, J. & Toole, J. M. Meridional overturning and large-scale circulation of the Indian Ocean. J. Geophys. Res. 105, 26117–26134 (2000)

    ADS  Google Scholar 

  88. Bryden, H. L. & Beal, L. M. Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes. Deep-Sea Res. 48, 1821–1845 (2001)

    CAS  Google Scholar 

  89. McDonagh, E. L., Bryden, H. L., King, B. A. & Sanders, R. J. The circulation of the Indian Ocean at 32°S. Prog. Oceanogr. 79, 20–36 (2008)

    ADS  Google Scholar 

  90. de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. J. G. & Naveira Garabato, A. C. The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr. 46, 663–681 (2016)

    ADS  Google Scholar 

  91. Mercier, H., Speer, K. G. & Honnorez, J. A. Flow pathways of bottom water through the Romanche and Chain fracture zones. Deep-Sea Res. 41, 1457–1477 (1994)

    Google Scholar 

  92. Friedrichs, M. A. M., McCartney, M. S. & Hall, M. M. Hemispheric asymmetry of deep water transport modes in the western Atlantic. J. Geophys. Res. 99, 25165–25179 (1994)

    ADS  Google Scholar 

  93. Fischer, J., Rhein, M., Schott, F. & Stramma, L. Deep water masses and transports in the Vema fracture zone. Deep-Sea Res. 43, 1,067–1,074 (1996)

    Google Scholar 

  94. Mercier, H. & Speer, K. G. Transport of bottom water in the Romanche fracture zone and the Chain fracture zone. J. Phys. Oceanogr. 28, 779–790 (1998)

    ADS  Google Scholar 

  95. Demidov, A. N., Dobrolyubov, S. A., Morozov, E. G. & Tarakanov, R. Y. Transport of bottom waters through the Vema fracture zone in the Mid-Atlantic Ridge. Dokl. Earth Sci. 416, 1120–1124 (2007)

    ADS  CAS  Google Scholar 

  96. Speer, K. G. & Zenk, W. The flow of Antarctic Bottom Water into the Brazil Basin. J. Phys. Oceanogr. 23, 2667–2682 (1993)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Barker and J. Dunn for their help with the mapping and for providing the distance look-up tables. We also thank J. Nycander, A. Melet, M. Nikurashin and J. Goff for sharing their published datasets. C.d.L., R.M.H. and T.J.McD. gratefully acknowledge Australian Research Council support through grant FL150100090.

Author information

Authors and Affiliations

Authors

Contributions

C.d.L. designed and conducted the analysis. G.M., F.R., R.M.H. and T.J.McD. contributed to analysis and presentation choices and to the scientific interpretation of results. C.d.L. prepared the manuscript. G.M., F.R., R.M.H. and T.J.McD. assisted in the writing.

Corresponding author

Correspondence to C. de Lavergne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. Key and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Bottom density contrasts and basin masks.

a, Shaded bottom neutral density field, with the 4 km bathymetric contour overlaid in black. b, Basin masks employed for Extended Data Figs 2, 3, 4. The dianeutral circulation, which is essentially confined to the near-bottom, can largely be tracked from the bottom density distribution. The four main northward paths of AABW are identified in the western Indian, eastern Indian, western Pacific and western Atlantic oceans. The southeastern Pacific, east of the East Pacific Rise, hosts inflow of Circumpolar Deep Water71,72 (see Extended Data Fig. 2). Large bottom density differences across connected, AABW-ventilated sub-basins largely reflect the efficient consumption of the densest through- and overflowing waters at deep straits and sills. The Chain (CFZ), Romanche (RFZ) and Vema (VFZ) fracture zones linking the abyssal eastern and western Atlantic are indicated.

Extended Data Figure 2 Seafloor and radiocarbon distributions of the whole Pacific and the southeastern Pacific.

The whole Pacific (shown in ac) comprises the main Pacific (shown in Fig. 3) and the southeastern Pacific (shown in df) domains defined in Extended Data Fig. 1b. a, d, Zonally summed seafloor areas as a function of latitude and depth. b, e, Zonally summed incrop areas as a function of latitude and pseudo-depth. c, f, Along-density zonal mean radiocarbon content (Δ14C) as a function of latitude and pseudo-depth. Panels with a pseudo-depth y axis have density contoured in black every 0.1 kg m−3 for γ ≥ 27.5 kg m−3. White curves depict the local northward–southward and diabatic–adiabatic transition levels inferred from the incrop area distribution, as in Fig. 3. The cluster of large incrop areas within 28–28.06 kg m−3 south of 20° N seen in b originates in the southeastern Pacific, which hosts a secondary circulation branch71,72 separate from the main abyssal overturning cell (Methods).

Extended Data Figure 3 Indian seafloor and radiocarbon distributions.

a, d, g, j, Zonally summed seafloor areas as a function of latitude and depth. b, e, h, k, Zonally summed incrop areas as a function of latitude and pseudo-depth. c, f, i, l, Along-density zonal mean radiocarbon content (Δ14C) as a function of latitude and pseudo-depth. Note that the colour scales differ from those in Fig. 3. Panels with a pseudo-depth y axis have density contoured in black every 0.1 kg m−3 for γ ≥ 27.5 kg m−3. White curves in all panels except gi depict the local northward–southward and diabatic–adiabatic transition levels inferred from the incrop area distribution, as in Fig. 3. In the Central Indian Basin (gi), whose abyss is not fed from the south but instead through gaps in the Ninety East Ridge, the white curves correspond to the peak and weak incrop density surfaces based on the total sub-basin incrop profile. Sub-basin masks are shown in Extended Data Fig. 1b.

Extended Data Figure 4 Atlantic seafloor and radiocarbon distributions.

a, d, Zonally summed seafloor areas as a function of latitude and depth. b, e, Zonally summed incrop areas as a function of latitude and pseudo-depth. c, f, Along-density zonal mean radiocarbon content (Δ14C) as a function of latitude and pseudo-depth. Notice that the colour scales differ from those in Fig. 3. Panels with a pseudo-depth y axis have density contoured in black every 0.1 kg m−3 for γ ≥ 27.5 kg m−3. In the western Atlantic (ac), white curves depict the local northward–southward and diabatic–adiabatic transition levels inferred from the incrop area distribution, as in Fig. 3. In the eastern Atlantic (df), whose abyss is not fed from the south but instead through ridge gaps in the vicinity of the Equator, white curves correspond to peak and weak incrop density surfaces based on the total sub-basin incrop profile. Sub-basin masks are shown in Extended Data Fig. 1b.

Extended Data Figure 5 Simplified sketch of the density transformation associated with scenarios S1 and S2.

a, Scenario S1 is the case of a uniform geothermal density sink or, equivalently, of a mixing-driven density flux that is uniform in the interior. Density loss occurs in a thin bottom boundary layer. The net density loss within a density layer, and therefore the dianeutral transport across it, is proportional to the layer’s incrop area. b, Scenario S2 is the case of bottom-enhanced turbulence where density loss in a thin bottom layer is compensated by an equal and opposite density gain above that layer. Density loss and density gain layers are sketched with equal thicknesses to illustrate this compensation: a density layer undergoes net density loss if the red area dominates over the blue area, and conversely. As an approximate rule, a density layer loses density in proportion to its incrop area but gains density in proportion to the incrop area of its underlying neighbour. Consequently, the larger the increase (or decrease) of incrop area with height, the larger the net density loss (or gain) of a density layer, and therefore the larger the net upwelling (or downwelling) transport across it.

Extended Data Figure 6 Bottom-intensified mixing scenarios.

32° S–48° N density profiles of the total density flux (a, d), the density flux averaged over density surfaces (b, e) and total dianeutral transports (c, f), under various scenarios for the local intensity of bottom-intensified mixing. Specifically, we set the magnitude of local density-flux profiles proportional to (see also labels and Methods): characteristics of the large-scale topography (ac, orange and red); characteristics of small-scale abyssal hills (ac, dark and pale blue); bottom energy fluxes into internal waves (df, orange and red); and powers of the bottom buoyancy frequency N (df, dark and pale blue). Here ‘slope2’ refers to the squared topographic slope. Absolute values of density fluxes are chosen such that the peak upwelling rate is 25 × 106 m3 s−1 for all scenarios. Only the structure—as opposed to the magnitude—of dianeutral transports thus warrants interpretation.

Extended Data Figure 7 Silicic acid distributions.

Along-density zonal mean silicic acid concentration41 as a function of latitude and pseudo-depth in the main Pacific (a), southeastern Pacific (b), western Indian (c), Arabian (d), central Indian (e), eastern Indian (f), western Atlantic (g) and eastern Atlantic (h) domains. Density is contoured in black every 0.1 kg m−3 for γ ≥ 27.5 kg m−3. White curves mark the peak and weak incrop levels, as in Extended Data Figs 2, 3, 4. Domains are defined in Extended Data Fig. 1b.

Extended Data Figure 8 Example radiocarbon map and underlying data.

Δ14C mapped (a) and measured (b) on the 28.045 kg m−3 neutral density surface. Dark grey patches in a are portions of the density surface that are unmapped owing to insufficient data density. Similar maps have been constructed for 140 density surfaces spanning the world ocean’s neutral density range13.

Extended Data Figure 9 Sub-basin profiles of incrop area.

Total incrop area as a function of density (ac) and pseudo-depth at 32° S (df), shown for labelled subdomains of the Pacific (a, d), Atlantic (b, e) and Indian (c, f) oceans. The abyssal Arabian and central Indian sub-basins exchange with the Southern Ocean via the western and eastern Indian oceans, respectively. We therefore use the 32° S pseudo-depth of the western and eastern Indian oceans for the (orange) Arabian and (pale blue) central Indian profiles in f, respectively. Sub-basin masks are shown in Extended Data Fig. 1b.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lavergne, C., Madec, G., Roquet, F. et al. Abyssal ocean overturning shaped by seafloor distribution. Nature 551, 181–186 (2017). https://doi.org/10.1038/nature24472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24472

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing