Abstract

Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200–400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015)

  2. 2.

    et al. BIOFRAG — a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol. Evol. 4, 1524–1537 (2014)

  3. 3.

    Forest fragmentation and matrix effects: the matrix does matter. J. Biogeogr. 33, 1791–1792 (2006)

  4. 4.

    Multiple edge effects and their implications in fragmented landscapes. J. Anim. Ecol. 74, 342–352 (2005)

  5. 5.

    et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016)

  6. 6.

    , , , & The environmental legacy of modern tropical deforestation. Curr. Biol. 26, 2161–2166 (2016)

  7. 7.

    & Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis (Island Press, 2013)

  8. 8.

    & Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31, 17–30 (1999)

  9. 9.

    & Pervasive impact of large-scale edge effects on a beetle community. Proc. Natl Acad. Sci. USA 105, 5426–5429 (2008)

  10. 10.

    , & Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007)

  11. 11.

    Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013)

  12. 12.

    , & Making statistics biologically relevant in fragmented landscapes. Trends Ecol. Evol. 25, 699–704 (2010)

  13. 13.

    & Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am. J. Primatol. 72, 1–16 (2010)

  14. 14.

    , , & Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34, 1–8 (2011)

  15. 15.

    et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014)

  16. 16.

    , & Avian extinctions from tropical and subtropical forests. Annu. Rev. Ecol. Evol. Syst. 35, 323–345 (2004)

  17. 17.

    et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005)

  18. 18.

    ., ., & Predicting extinction risk in declining species. Proc. R. Soc. Lond. B 267, 1947–1952 (2000)

  19. 19.

    & Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007)

  20. 20.

    & Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol. Conserv. 109, 283–295 (2003)

  21. 21.

    . et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280, 20122131 (2013)

  22. 22.

    et al. Countryside biogeography of Neotropical reptiles and amphibians. Ecology 95, 856–870 (2014)

  23. 23.

    Edge effects in central Amazonian forest fragments. Ecology 75, 2438–2445 (1994)

  24. 24.

    , & Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012)

  25. 25.

    , & Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob. Ecol. Biogeogr. 15, 8–20 (2006)

  26. 26.

    et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2, e1017 (2007)

  27. 27.

    , , , & Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014)

  28. 28.

    et al. Landscape moderation of biodiversity patterns and processes — eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685 (2012)

  29. 29.

    et al. Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes. Biol. Conserv. 200, 207–215 (2016)

  30. 30.

    , & BioFrag | Edge response—The BioFrag software. (2016)

  31. 31.

    ., . & Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015)

  32. 32.

    , & Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013)

  33. 33.

    et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015)

  34. 34.

    & Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landsc. Ecol. 30, 1449–1459 (2015)

  35. 35.

    , & A framework for integrating thermal biology into fragmentation research. Ecol. Lett. 19, 361–374 (2016)

  36. 36.

    , & Home range, time, and body size in mammals. Ecology 67, 413–418 (1986)

  37. 37.

    , & Can life histories predict the effects of habitat fragmentation? A meta-analysis with terrestrial mammals. Appl. Ecol. Environ. Res. 12, 505–521 (2014)

  38. 38.

    , & Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418, 527–530 (2002)

  39. 39.

    . & Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B 281, 20142103 (2014)

  40. 40.

    , , , & Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers. Distrib. 22, 717–730 (2016)

  41. 41.

    , & Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004)

  42. 42.

    , & Movement ecology of amphibians: a missing component for understanding population declines. Biol. Conserv. 169, 44–53 (2014)

  43. 43.

    et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015)

  44. 44.

    et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015)

  45. 45.

    , , & Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522 (2004)

  46. 46.

    et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782 (2005)

  47. 47.

    Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995)

  48. 48.

    et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008)

  49. 49.

    , , , & The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009)

  50. 50.

    et al. A global strategy for road building. Nature 513, 229–232 (2014)

  51. 51.

    , & Integrated biodiversity monitoring for the jarrah (Eucalyptus marginata) forest in south-west Western Australia: the FORESTCHECK project. Aust. For. 74, 240–253 (2011)

  52. 52.

    , , & Paying the extinction debt: woodland birds in the Mount Lofty Ranges, South Australia. Emu 111, 59–70 (2011)

  53. 53.

    , , & Community-level diversity modelling of birds and butterflies on Anjouan, Comoro Islands. Biol. Conserv. 143, 1364–1374 (2010)

  54. 54.

    et al. Biodiversity in a forest–agriculture mosaic — The changing face of West African rainforests. Biol. Conserv. 143, 2341–2350 (2010)

  55. 55.

    , & Edge effects as the principal cause of area effects on birds in fragmented secondary forest. Oikos 119, 918–926 (2010)

  56. 56.

    , , & Complex effects of scale on the relationships of landscape pattern versus avian species richness and community structure in a woodland savanna mosaic. Ecography 35, 393–411 (2012)

  57. 57.

    , & Landscape-level impact of tropical forest loss and fragmentation on bird occurrence in eastern Guatemala. Ecol. Modell. 221, 512–526 (2010)

  58. 58.

    et al. The value of primary, secondary, and plantation forests for a Neotropical herpetofauna. Conserv. Biol. 21, 775–787 (2007)

  59. 59.

    , , & The value of primary, secondary and plantation forests for Amazonian birds. Biol. Conserv. 136, 212–231 (2007)

  60. 60.

    , , & Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS ONE 10, e0128923 (2015)

  61. 61.

    , , & Long-term landscape change and bird abundance in Amazonian rainforest fragments. Conserv. Biol. 20, 1212–1223 (2006)

  62. 62.

    et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007)

  63. 63.

    , , & Effects of rain forest logging on species richness and assemblage composition of small mammals in Southeast Asia. J. Biogeogr. 34, 1087–1099 (2007)

  64. 64.

    (ed.). A Biodiversity Assessment of the Centre Hills, Montserrat (Durrell, 2008)

  65. 65.

    & Seasonal differences in population-, ensemble- and community-level responses of bats to landscape structure in Amazonia. Oikos 119, 1654–1664 (2010)

  66. 66.

    et al. Multiple dimensions of bat biodiversity along an extensive tropical elevational gradient. J. Anim. Ecol. 83, 1124–1136 (2014)

  67. 67.

    , , , & Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J. Trop. Ecol. 29, 331–344 (2013)

  68. 68.

    , , , & Conservation value of forest fragments to Palaeotropical bats. Biol. Conserv. 141, 2112–2126 (2008)

  69. 69.

    , & Forestcheck: terrestrial vertebrate associations with fox control and silviculture in jarrah (Eucalyptus marginata) forest. Aust. For. 74, 336–349 (2011)

  70. 70.

    & Effects of anthropogenic activities on lizard communities in northern Madagascar. Anim. Conserv. 14, 542–552 (2011)

  71. 71.

    , & The use of habitat suitability models and species–area relationships to predict extinction debts in coastal forests, South Africa. Divers. Distrib. 19, 1353–1365 (2013)

  72. 72.

    & letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015)

  73. 73.

    , , & Macroecology and extinction risk correlates of frogs. Glob. Ecol. Biogeogr. 17, 211–221 (2008)

  74. 74.

    , , , & Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008)

  75. 75.

    , , & The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014)

  76. 76.

    , , , & Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016)

  77. 77.

    Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734 (2008)

  78. 78.

    & Water relations of the eggs of Anolis auratus and Anolis limifrons. Ecology 62, 556–562 (1981)

  79. 79.

    , & Thermal ecology of the lizard, Anolis limifrons with comparative notes on three additional Panamanian Anoles. Ecology 51, 246–254 (1970)

  80. 80.

    Lizards of Brazilian Amazonia (Reptilia: Squamata). Zool. Verh. 299, 1–706 (1995)

  81. 81.

    & Patterns of morphological variation and correlates of habitat use in chameleons. Biol. J. Linn. Soc. 76, 91–103 (2002)

  82. 82.

    Amphibian temperature regulation studies in the field and laboratory. Integr. Comp. Biol. 19, 345–356 (1979)

  83. 83.

    Body temperatures of reptiles. Am. Midl. Nat. 73, 376–422 (1965)

  84. 84.

    A preliminary review of the thermal requirements of amphibians. Ecology 44, 238–255 (1963)

  85. 85.

    Ecological observations on Anolis lionotus and Anolis poecilopus (Reptilia, Sauria) in Panama. Am. Mus. Nat. Hist. 2516, 1–29 (1973)

  86. 86.

    , , & Long-term effect of forest fragmentation on the Amazonian gekkonid lizards, Coleodactylus amazonicus and Gonatodes humeralis. Austral Ecol. 33, 723–729 (2008)

  87. 87.

    & Female reproductive cycles of five species of snakes (Reptilia: Colubridae) from the Yucatan Peninsula, Mexico. Biotropica 20, 326–333 (1988)

  88. 88.

    , , & Microhabitat preference of Egernia napoleonis in undisturbed jarrah forest, and availability and introduction of microhabitats to encourage colonization of restored forest. Restor. Ecol. 21, 722–728 (2013)

  89. 89.

    , , & The blunt-headed vine snake, Imantodes cenchoa (Linnaeus, 1758), in Minas Gerais, southeastern Brazil. Biotemas 23, 173–176 (2010)

  90. 90.

    & Three new species of Pristimantis (Lissamphibia, Anura) from montane forests of the Cordillera Yanachaga in Central Peru. Phyllomedusa 6, 119–135 (2007)

  91. 91.

    , & Redescription of Stenocercus erythrogaster (Hallowell). Copeia 2004, 940–944 (2004)

  92. 92.

    Lesser Antillean snake faunas: distribution, ecology, and conservation concerns. Oryx 38, 311–320 (2004)

  93. 93.

    The ecology of two lizards on a tropical beach. Ecol. Monogr. 33, 83–112 (1963)

  94. 94.

    & Studies on the species of the South American lizard genus Arthrosaura Boulenger (Reptilia: Sauria: Teiidae), with the resurrection of two species. Zool. Meded. Leiden 66, 453–484 (1992)

  95. 95.

    , , & A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology 78, 2191–2203 (1997)

  96. 96.

    , , & Factors affecting the use of reforested sites by reptiles in cleared rainforest landscapes in tropical and subtropical Australia. Restor. Ecol. 14, 67–76 (2006)

  97. 97.

    , , , & Morphological variation in Central American leaf-litter anoles: Norops humilis, N. quaggulus and N. uniformis. Salamandra (Frankf.) 42, 239–254 (2006)

  98. 98.

    & Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia 2003, 285–298 (2003)

  99. 99.

    ., ., ., . & Distribution, habitat, size, and color pattern of Cnemidophorus lemniscatus (Sauria: Teiidae) on Cayo Cochino Pequeño, Honduras. Southwest. Nat. 52, 38–45 (2007)

  100. 100.

    , & Lowland reptiles of Yacopi (Cundinamarca, Colombia). Rev. Acad. Colomb. Ciencias Exactas Fis. Nat. 32, 93–103 (2008)

  101. 101.

    & Reptile and frog utilisation of rehabilitated bauxite minesites and dieback-affected sites in Western Australia’s Jarrah Eucalyptus marginata forest. Biol. Conserv. 34, 227–249 (1985)

  102. 102.

    Evolutionary history of the South American microteiid lizards (Teiidae: Gymnophthalminae). Copeia 1980, 36–56 (1980)

  103. 103.

    , & Rediscovery and redescription of the Malagasy dwarf gecko Lygodactylus klemmeri. Zootaxa 1073, 31–35 (2005)

  104. 104.

    Morphological variation in the endemic Colombian water snake, Helicops danieli (Serpentes, Xenododontidae). Rev. Acad. Colomb. Ciencias Exactas Fis. Nat. 26, 589–594 (2003)

  105. 105.

    & Status of West Indian racers in the Lesser Antilles. Oryx 25, 33–38 (1991)

  106. 106.

    , , & Habitat use, daily activity periods, and thermal ecology of Ameiva ameiva (Squamata: Teiidae) in a caatinga area of northeastern Brazil. Phyllomedusa 10, 165–176 (2011)

  107. 107.

    & Physiological mechanisms of thermoregulation in reptiles: a review. J. Comp. Physiol. B 175, 533–541 (2005)

  108. 108.

    Euryphagy in a tropical snake, Coniophanes fissidens. Biotropica 17, 57–64 (1985)

  109. 109.

    , & Heliotherms in tropical rain forest: the ecology of Kentropyx calcarata (Teiidae) and Mabuya nigropunctata (Scincidae) in the Curuá-Una of Brazil. J. Trop. Ecol. 13, 199–220 (1997)

  110. 110.

    , , & History and the global ecology of squamate reptiles. Am. Nat. 162, 44–60 (2003)

  111. 111.

    Comparative demography of the lizard Basiliscus basiliscus. Herpetologica 38, 189–208 (1982)

  112. 112.

    , , , & Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia 1997, 745–757 (1997)

  113. 113.

    & The herpetofauna of the rainforests of Honduras. Caribb. J. Sci. 42, 88–113 (2006)

  114. 114.

    Amphibians and Reptiles of Northern Guatemala, the Yucatan, and Belize (Animal Natural History Series) (Oklahoma Univ. Press, 1999)

  115. 115.

    Frogs of southeastern Brazil, 1954, Smithsonian Institution, United States National Museum Bulletin (Smithsonian Institution Press, 1954)

  116. 116.

    & Amphibians and Reptiles of Madagascar, the Mascarene, the Seychelles, and the Comoro Islands (Krieger, 2000)

  117. 117.

    & Herpetology: An Introductory Biology of Amphibians and Reptiles 4th edn (Academic, 2013)

  118. 118.

    & Biology of Amphibians (McGrawHill, 1986)

  119. 119.

    The Amphibians and Reptiles of Costa Rica: A Herpetofauna Between Two Continents, Between Two Seas (Univ. Chicago Press, 2002)

  120. 120.

    et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014)

  121. 121.

    et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009)

  122. 122.

    et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013)

  123. 123.

    mgcv:mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R v.3.2.3 (2015)

  124. 124.

    ggplot2. Elegant Graphics for Data Analysis (Springer, 2009)

  125. 125.

    MuMIn: Multi-model inference. R v.1.9.13 (2015)

Download references

Acknowledgements

We thank D. Coomes for contributions during the early stages of the BIOFRAG project, B. Phalan, P. Stouffer, H. Possingham and the Western Australian Department of Parks and Wildlife for supplying additional data from Ghana, Brazil, Australia and Western Australia, respectively, J. Tylianakis for providing comments on an earlier draft of the manuscript. M.P., V.L. and R.M.E. were supported by European Research Council Project number 281986. This paper represents a contribution to the Grand Challenges in Ecosystems and the Environment Initiative of Imperial College.

Author information

Author notes

    • M. Pfeifer
    •  & V. Lefebvre

    These authors contributed equally to this work.

Affiliations

  1. School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK

    • M. Pfeifer
  2. Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK

    • M. Pfeifer
    • , V. Lefebvre
    • , C. Banks-Leite
    •  & R. M. Ewers
  3. Flowminder Foundation, Roslagsgatan 17, SE-11355 Stockholm, Sweden

    • V. Lefebvre
  4. School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK

    • C. A. Peres
  5. Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK

    • O. R. Wearn
  6. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

    • C. J. Marsh
  7. BirdLife International, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK

    • S. H. M. Butchart
  8. Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

    • S. H. M. Butchart
  9. Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, Mexico

    • V. Arroyo-Rodríguez
  10. Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK

    • J. Barlow
  11. Fundación para el Ecodesarrollo y la Conservación (FUNDAECO), 25 Calle, 2-53, Zona 1, Ciudad de Guatemala, CP 0101, Guatemala

    • A. Cerezo
  12. Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut 06269, USA

    • L. Cisneros
  13. The Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney OX13 5QL, UK

    • N. D’Cruze
  14. Applied Conservation Ecology Lab, Programa de Pós-graduação Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km16, Salobrinho, 45662-000 Ilhéus, Bahia, Brazil

    • D. Faria
    •  & J. C. Morante-Filho
  15. Forest Biodiversity Research Network, Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA

    • A. Hadley
    •  & U. Kormann
  16. Seabird Ecology Group, University of Liverpool, Liverpool L69 7ZX, UK

    • S. M. Harris
  17. Department of Ecology and Evolutionary Biology, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA

    • B. T. Klingbeil
    •  & M. R. Willig
  18. Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Gent, Belgium

    • L. Lens
  19. Grupo de Biodiversidad y Conservación, Reptiles, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Ciudad Universitaria, Edificio 425, Bogotá, Distrito Capital, Colombia

    • G. F. Medina-Rangel
  20. Conservation Ecology Research Unit, Department of Zoology and Entomology, University of Pretoria, Hatfield, 0083 Pretoria, South Africa

    • P. Olivier
  21. Department of Biology, University of Western Ontario, London, Ontario N6A 4B8, Canada

    • S. L. Peters
  22. Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    • A. Pidgeon
  23. Biology and Health Sciences Centre, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil

    • D. B. Ribeiro
  24. Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany

    • C. Scherber
  25. Muséum National d’Histoire Naturelle, Paris 75005, France

    • L. Schneider-Maunoury
  26. Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, UK

    • M. Struebig
  27. Department of Ecology and Territory, Faculty of Rural and Environmental Studies, Pontificia Universidad Javeriana, Bogotá 110231594, Colombia

    • N. Urbina-Cardona
  28. Department of Biology, John Carroll University, University Heights, Ohio, USA

    • J. I. Watling
  29. Department of Biological Sciences, California State University Los Angeles, Los Angeles, California 90032, USA

    • E. M. Wood

Authors

  1. Search for M. Pfeifer in:

  2. Search for V. Lefebvre in:

  3. Search for C. A. Peres in:

  4. Search for C. Banks-Leite in:

  5. Search for O. R. Wearn in:

  6. Search for C. J. Marsh in:

  7. Search for S. H. M. Butchart in:

  8. Search for V. Arroyo-Rodríguez in:

  9. Search for J. Barlow in:

  10. Search for A. Cerezo in:

  11. Search for L. Cisneros in:

  12. Search for N. D’Cruze in:

  13. Search for D. Faria in:

  14. Search for A. Hadley in:

  15. Search for S. M. Harris in:

  16. Search for B. T. Klingbeil in:

  17. Search for U. Kormann in:

  18. Search for L. Lens in:

  19. Search for G. F. Medina-Rangel in:

  20. Search for J. C. Morante-Filho in:

  21. Search for P. Olivier in:

  22. Search for S. L. Peters in:

  23. Search for A. Pidgeon in:

  24. Search for D. B. Ribeiro in:

  25. Search for C. Scherber in:

  26. Search for L. Schneider-Maunoury in:

  27. Search for M. Struebig in:

  28. Search for N. Urbina-Cardona in:

  29. Search for J. I. Watling in:

  30. Search for M. R. Willig in:

  31. Search for E. M. Wood in:

  32. Search for R. M. Ewers in:

Contributions

M.P., V.L. and R.M.E. designed the study and wrote the first draft of the manuscript. M.P. conducted all analyses and V.L. developed the methodology. R.M.E. and all other authors contributed data. All authors commented on manuscript drafts.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Pfeifer.

Reviewer Information Nature thanks P. Potapov, C. Sekercioglu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.