Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gravitational waves

A golden binary

The discovery of gravitational waves from a neutron-star merger and the detection of the event across the electromagnetic spectrum give insight into many aspects of gravity and astrophysics. See Letter p.64, p.67, p.71, p.75 & p.80

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The merger of a binary neutron-star system.

References

  1. 1

    LIGO Scientific Collaboration and Virgo Collaboration GCN Circ. 21509 (2017).

  2. 2

    Abbott, B. P. et al. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. 3

    Abbott, B. P. et al. Phys. Rev. Lett. 116, 241103 (2016).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Abbott, B. P. et al. Phys. Rev. Lett. 118, 221101 (2017).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Abbott, B. P. et al. Phys. Rev. Lett. 119, 141101 (2017).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Connaughton, V. GCN Circ. 21506 (2017).

  7. 7

    Arcavi, I. et al. Nature 551, 64–66 (2017).

    ADS  Article  Google Scholar 

  8. 8

    Pian, E. et al. Nature 551, 67–70 (2017).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Troja, E. et al. Nature 551, 71–74 (2017).

    ADS  Article  Google Scholar 

  10. 10

    Smartt, S. J. et al. Nature 551, 75–79 (2017).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Nature 551, 80–84 (2017).

    ADS  Article  Google Scholar 

  12. 12

    Berti, E. et al. Class. Quantum Grav. 32, 243001 (2015).

    ADS  Article  Google Scholar 

  13. 13

    Berger, E. Annu. Rev. Astron. Astrophys. 52, 43–105 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Margutti, R. et al. Astrophys. J. http://dx.doi.org/10.3847/2041-8213/aa9057 (2017).

  15. 15

    Wollaeger, R. T. et al. Preprint at https://arxiv.org/abs/1705.07084 (2017).

  16. 16

    Metzger, B. D. Living Rev. Relativ. 20, 3 (2017).

    ADS  Article  Google Scholar 

  17. 17

    Cowperthwaite, P. S. et al. Astrophys. J. http://dx.doi.org/10.3847/2041-8213/aa8fc7 (2017).

  18. 18

    Chornock, R. et al. Astrophys. J. http://dx.doi.org/10.3847/2041-8213/aa905c (2017).

  19. 19

    Lattimer, J. M. & Schramm, D. N. Astrophys. J. 192, L145–L147 (1974).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Coleman Miller.

Related links

Related links

Related links in Nature Research

Gravitational waves: History of black holes revealed by their spin

Gravitational waves: Stellar palaeontology

Astrophysics: Recipe for a black-hole merger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, M. A golden binary. Nature 551, 36–37 (2017). https://doi.org/10.1038/nature24153

Download citation

Further reading

  • Kilonovae

    • Brian D. Metzger

    Living Reviews in Relativity (2020)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing