Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human TRPML1 channel structures in open and closed conformations

Abstract

Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-releasing cation channel that mediates the calcium signalling and homeostasis of lysosomes. Mutations in TRPML1 lead to mucolipidosis type IV, a severe lysosomal storage disorder. Here we report two electron cryo-microscopy structures of full-length human TRPML1: a 3.72-Å apo structure at pH 7.0 in the closed state, and a 3.49-Å agonist-bound structure at pH 6.0 in an open state. Several aromatic and hydrophobic residues in pore helix 1, helices S5 and S6, and helix S6 of a neighbouring subunit, form a hydrophobic cavity to house the agonist, suggesting a distinct agonist-binding site from that found in TRPV1, a TRP channel from a different subfamily. The opening of TRPML1 is associated with distinct dilations of its lower gate together with a slight structural movement of pore helix 1. Our work reveals the regulatory mechanism of TRPML channels, facilitates better understanding of TRP channel activation, and provides insights into the molecular basis of mucolipidosis type IV pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of TRPML1.
Figure 2: The structure of ML-SA1-bound TRPML1 compared with other ligand-bound channels.
Figure 3: Electrophysiological characterization of TRPML1 and its agonist-binding pocket.
Figure 4: Structural comparisons of apo and ML-SA1-bound TRPML1structures.
Figure 5: Structural rearrangements in the outer pore region and lower gate.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Zeevi, D. A., Frumkin, A. & Bach, G. TRPML and lysosomal function. Biochim. Biophys. Acta 1772, 851–858 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Venkatachalam, K., Wong, C. O. & Zhu, M. X. The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58, 48–56 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miedel, M. T. et al. Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J. Exp. Med. 205, 1477–1490 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, X. et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18, 404–417 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venkatachalam, K. et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838–851 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vergarajauregui, S., Connelly, P. S., Daniels, M. P. & Puertollano, R. Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17, 2723–2737 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, X. et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7, 12109 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong, X. P., Wang, X. & Xu, H. TRP channels of intracellular membranes. J. Neurochem. 113, 313–328 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soyombo, A. A. et al. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J. Biol. Chem. 281, 7294–7301 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Chen, C. C. et al. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat. Commun. 5, 4681 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhang, X., Li, X. & Xu, H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc. Natl Acad. Sci. USA 109, 11384–11389 (2012)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Dong, X. P. et al. PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wang, W., Zhang, X., Gao, Q. & Xu, H. TRPML1: an ion channel in the lysosome. Handb. Exp. Pharmacol. 222, 631–645 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Bargal, R. et al. Identification of the gene causing mucolipidosis type IV. Nat. Genet. 26, 118–123 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Bassi, M. T. et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin—and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet. 67, 1110–1120 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weitz, R. & Kohn, G. Clinical spectrum of mucolipidosis type IV. Pediatrics 81, 602–603 (1988)

    CAS  PubMed  Google Scholar 

  21. Bach, G. Mucolipidosis type IV. Mol. Genet. Metab. 73, 197–203 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. García-Añoveros, J. & Wiwatpanit, T. TRPML2 and mucolipin evolution. Handb. Exp. Pharmacol. 222, 647–658 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Grimm, C., Barthmes, M. & Wahl-Schott, C. Trpml3. Handb. Exp. Pharmacol. 222, 659–674 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl Acad. Sci. USA 99, 14994–14999 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paulsen, C. E., Armache, J. P., Gao, Y., Cheng, Y. & Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511–517 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huynh, K. W. et al. Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 7, 11130 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773.e11, (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilkes, M. et al. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 24, 123–130 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Li, M. et al. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 24, 205–213 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protocols 9, 2574–2585 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. Tang, L. et al. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537, 117–121 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vergarajauregui, S. & Puertollano, R. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7, 337–353 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong, X. P. et al. Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J. Biol. Chem. 284, 32040–32052 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X., Saha, P., Li, J., Blobel, G. & Pfeffer, S. R. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc. Natl Acad. Sci. USA 113, 10079–10084 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pipalia, N. H. et al. Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells. J. Lipid Res. 58, 695–708 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, Q. et al. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature http://doi.org/10.1038/nature24035 (2017)

  43. Fine, M. et al. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains. J. Gen. Physiol. 137, 137–154 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, T. M. & Hilgemann, D. W. Ca-dependent nonsecretory vesicle fusion in a secretory cell. J. Gen. Physiol. 132, 51–65 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015)

    Article  PubMed  Google Scholar 

  49. Grigorieff, N. Frealign: an exploratory tool for single-particle cryo-EM. Methods Enzymol. 579, 191–226 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

  53. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ten Eyck, L. F. Efficient structure-factor calculation for large molecules by the fast Fourier transform. Acta Crystallogr. A 33, 486–492 (1977)

    Article  ADS  Google Scholar 

  55. Wang, Z. et al. An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat. Commun. 5, 4808 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Ebrahim and J. Sotiris at the Rockefeller Cryo-EM Resource Center for assistance in data collection, Z. Zhang for help in EM data processing, D. Hilgemann, E. Coutavas and E. Debler for help in manuscript preparation, and J. Fernandez and H. Molina for mass spectrometry analyses. This work was supported by funds from the Howard Hughes Medical Institute (to G.B.) and the Endowed Scholars Program in Medical Science of University of Texas Southwestern Medical Center (to X.L.). M.F. was supported by the National Institutes of Health (T32DK007257 and HL119843). X.L. was the recipient of a Gordon and Betty Moore Foundation Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and X.L. purified proteins and carried out cryo-EM work. M.F. carried out functional characterization by electrophysiology. All authors analysed data and contributed to manuscript preparation. X.L. conceived the project and wrote the paper.

Corresponding authors

Correspondence to Günter Blobel or Xiaochun Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks S. Hansen, C. Ulens and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Sequence alignment of human TRPML1, TRPML2 and TRPML3.

Residues discussed in the paper are annotated using symbols at their positions.

Extended Data Figure 2 Biochemical properties and cryo-EM studies of human TRPML1.

a, Size-exclusion chromatogram and SDS–PAGE gel of the purified TRPML1. A degradation fragment is presented on the gel and is indicated by an asterisk. b, Density maps of structures coloured by local resolution estimation using blocres56.

Extended Data Figure 3 Data and model quality assessment.

a, Left to right, a representative electron micrograph at defocus −2.0 μm; 2D classification; and FSC curves of the apo structure. The left curve shows a plot of the FSC as a function of resolution using Frealign output, the right curve shows the FSC calculated between the refined structure and the half map used for refinement, the other half map, and the full map. b, Left to right, a representative micrograph at defocus −2.0 μm; 2D classification; and FSC curves of ML-SA1-bound TRPML1 structure. The two FSC curves represent the same as for panel a.

Extended Data Figure 4 Electron microscopy density of different portions of the structures.

a, The apo TRPML1 structure. b, The ML-SA1-bound TRPML1 structure.

Extended Data Figure 5 Comparisons of TRPML1 and PKD2.

a, Superimposition of overall structures of TRPML1 and PKD2 (PDB code: 5T4D). b, Superimposition of one subunit of TRPML1 and PKD2. The extended structural elements of pre-S1 (α1 and α2), and α4 and S2 of TRPML1, are highlighted in purple and pink, respectively.

Extended Data Figure 6 Whole-cell currents of HEK wild-type cells and TRPML1(L/A) with Y436A, F465A or Y499A mutations.

a, Whole-cell currents of HEK293T cells transfected with empty vector at pH 4.6 or pH 7.2 with or without 10 μM ML-SA1 and 50 μΜ PtdIns(3,5)P2. b, Whole-cell currents of HEK293T cells transfected with surface-expressing mutant eGFP–TRPML1(L/A) containing Y436A, F465A or Y499A under the same conditions as in panel a. c, Confocal images of patched cells. Scale bars, 10 μm.

Extended Data Figure 7 The distribution of mutations that cause mucolipidosis type IV in the TRPML1 structure.

The mutations are shown as grey balls.

Extended Data Table 1 Statistics of data collection and refinement

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmiege, P., Fine, M., Blobel, G. et al. Human TRPML1 channel structures in open and closed conformations. Nature 550, 366–370 (2017). https://doi.org/10.1038/nature24036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature24036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing